7 research outputs found
A pattern learning approach to question answering within the Ephyra framework
Abstract. This paper describes the Ephyra question answering engine, a modular and extensible framework that allows to integrate multiple approaches to question answering in one system. Our framework can be adapted to languages other than English by replacing language-specific components. It supports the two major approaches to question answering, knowledge annotation and knowledge mining. Ephyra uses the web as a data resource, but could also work with smaller corpora. In addition, we propose a novel approach to question interpretation which abstracts from the original formulation of the question. Text patterns are used to interpret a question and to extract answers from text snippets. Our system automatically learns the patterns for answer extraction, using question-answer pairs as training data. Experimental results revealed the potential of this approach.
Automatic set expansion for list question answering
This paper explores the use of set expansion (SE) to improve question answering (QA) when the expected answer is a list of entities belonging to a certain class. Given a small set of seeds, SE algorithms mine textual resources to produce an extended list including additional members of the class represented by the seeds. We explore the hypothesis that a noise-resistant SE algorithm can be used to extend candidate answers produced by a QA system and generate a new list of answers that is better than the original list produced by the QA system. We further introduce a hybrid approach which combines the original answers from the QA system with the output from the SE algorithm. Experimental results for several state-of-the-art QA systems show that the hybrid system performs better than the QA systems alone when tested on list question data from past TREC evaluations.