979 research outputs found
Penestragania apicalis (Osborn & Ball, 1898), another invasive Nearctic leafhopper found in Europe: (Hemiptera: Cicadellidae, Iassinae)
Penestragania apicalis (Osborn & Ball, 1898), eine weitere invasive nearktische Zikade in Europa gefunden (Hemiptera: Cicadellidae, Iassinae). – Im Jahr 2010 wurde die nearktische Zikadenart Penestragania apicalis (Osb. & Ball) erstmalig in Europa gefunden. Insgesamt sind derzeit 16 Fundorte in Frankreich, der Schweiz, Deutschland und Österreich bekannt; daher ist davon auszugehen, dass die Art bereits seit längerer Zeit fest etabliert und in Europa und vielleicht weltweit weiter verbreitet ist. Wie in Nordamerika lebt sie an Gleditschie (Gleditsia triacanthos L.), überwintert im Eistadium und hat eine oder zwei Generation pro Jahr, mit adulten Tieren von mindestens Ende Juni bis Anfang Oktober. Ob in Europa wirtschaftlich relevante Schäden verursacht werden, ist noch unklar.In 2010 the Nearctic leafhopper Penestragania apicalis (Osb. & Ball) was found for the first time in Europe. Altogether there are now 16 known localities in France, Switzerland, Germany and Austria indicating that the species is well es‐ tablished for a rather long period and more widespread in Europe and perhaps worldwide. As in North America it lives on honeylocust (Gleditsia triacanthos L.), overwinters in the egg stage and probably has one or two generations a year, with adults at least from late June until early October. It is yet unclear if it causes relevant damage to the host plant in Europe
Penestragania apicalis (Osborn & Ball,1898),another invasive Nearctic leafhopper found in Europe
In 2010 the Nearctic leafhopper Penestragania apicalis (Osb.& Ball) was found for the first time in Europe. Altogether there are now 16 known localities in France, Switzerland, Germany and Austria indicating that the species is well established for a rather long period and more widespread in Europe and perhaps worldwide. As in North America it lives on honeylocust (Gleditsia triacanthos L.), overwinters in the egg stage and probably has one or two generations a year, with adults at least from late June until early October. It is yet unclear if it causes relevant damage to the host plant in Europe
Strategic programming on graph rewriting systems
We describe a strategy language to control the application of graph rewriting
rules, and show how this language can be used to write high-level declarative
programs in several application areas. This language is part of a graph-based
programming tool built within the port-graph transformation and visualisation
environment PORGY.Comment: In Proceedings IWS 2010, arXiv:1012.533
Repeated exposure to transient obstructive sleep apnea-related conditions causes an atrial fibrillation substrate in a chronic rat model
Background
High night-to-night variability in obstructive sleep apnea (OSA) is associated with atrial fibrillation (AF). Obstructive apneas are characterized by intermittent deoxygenation-reoxygenation and intrathoracic pressure swings during ineffective inspiration against occluded upper airways.
Objective
We elucidated the effect of repeated exposure to transient OSA conditions simulated by intermittent negative upper airway pressure (INAP) on the development of an AF substrate.
Methods
INAP (48 events/4 h; apnea-hypopnea index 12 events/h) was applied in sedated spontaneously breathing rats (2% isoflurane) to simulate mild-to-moderate OSA. Rats without INAP served as a control group (CTR). In an acute test series (ATS), rats were either killed immediately (n = 9 per group) or after 24 hours of recovery (ATS-REC: n = 5 per group). To simulate high night-to-night variability in OSA, INAP applications (n = 10; 24 events/4 h; apnea-hypopnea index 6/h) were repeated every second day for 3 weeks in a chronic test series (CTS).
Results
INAP increased atrial oxidative stress acutely, represented in decreases of reduced to oxidized glutathione ratio (ATS: INAP: 0.33 ± 0.05 vs CTR: 1 ± 0.26; P = .016), which was reversible after 24 hours (ATS-REC: INAP vs CTR; P = .274). Although atrial oxidative stress did not accumulate in the CTS, atrial histological analysis revealed increased cardiomyocyte diameters, reduced connexin 43 expression, and increased interstitial fibrosis formation (CTS: INAP 7.0% ± 0.5% vs CTR 5.1% ± 0.3%; P = .013), which were associated with longer inducible AF episodes (CTS: INAP: 11.65 ± 4.43 seconds vs CTR: 0.7 ± 0.33 seconds; P = .033).
Conclusion
Acute simulation of OSA was associated with reversible atrial oxidative stress. Cumulative exposure to these transient OSA-related conditions resulted in AF substrates and was associated with increased AF susceptibility. Mild-to-moderate OSA with high night-to-night variability may deserve intensive management to prevent atrial substrate development
Tachycardiomyopathy entails a dysfunctional pattern of interrelated mitochondrial functions
Tachycardiomyopathy is characterised by reversible left ventricular dysfunction, provoked by rapid ventricular rate. While the knowledge of mitochondria advanced in most cardiomyopathies, mitochondrial functions await elucidation in tachycardiomyopathy. Pacemakers were implanted in 61 rabbits. Tachypacing was performed with 330 bpm for 10 days (n = 11, early left ventricular dysfunction) or with up to 380 bpm over 30 days (n = 24, tachycardiomyopathy, TCM). In n = 26, pacemakers remained inactive (SHAM). Left ventricular tissue was subjected to respirometry, metabolomics and acetylomics. Results were assessed for translational relevance using a human-based model: induced pluripotent stem cell derived cardiomyocytes underwent field stimulation for 7 days (TACH–iPSC–CM). TCM animals showed systolic dysfunction compared to SHAM (fractional shortening 37.8 ± 1.0% vs. 21.9 ± 1.2%, SHAM vs. TCM, p < 0.0001). Histology revealed cardiomyocyte hypertrophy (cross-sectional area 393.2 ± 14.5 µm2 vs. 538.9 ± 23.8 µm2, p < 0.001) without fibrosis. Mitochondria were shifted to the intercalated discs and enlarged. Mitochondrial membrane potential remained stable in TCM. The metabolite profiles of ELVD and TCM were characterised by profound depletion of tricarboxylic acid cycle intermediates. Redox balance was shifted towards a more oxidised state (ratio of reduced to oxidised nicotinamide adenine dinucleotide 10.5 ± 2.1 vs. 4.0 ± 0.8, p < 0.01). The mitochondrial acetylome remained largely unchanged. Neither TCM nor TACH–iPSC–CM showed relevantly increased levels of reactive oxygen species. Oxidative phosphorylation capacity of TCM decreased modestly in skinned fibres (168.9 ± 11.2 vs. 124.6 ± 11.45 pmol·O2·s−1·mg−1 tissue, p < 0.05), but it did not in isolated mitochondria. The pattern of mitochondrial dysfunctions detected in two models of tachycardiomyopathy diverges from previously published characteristic signs of other heart failure aetiologies
Metrics reloaded: Pitfalls and recommendations for image analysis validation
Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. Particularly in automatic biomedical image analysis, chosen performance metrics often do not reflect the domain interest, thus failing to adequately measure scientific progress and hindering translation of ML techniques into practice. To overcome this, our large international expert consortium created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. The framework was developed in a multi-stage Delphi process and is based on the novel concept of a problem fingerprint - a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), data set and algorithm output. Based on the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as a classification task at image, object or pixel level, namely image-level classification, object detection, semantic segmentation, and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool, which also provides a point of access to explore weaknesses, strengths and specific recommendations for the most common validation metrics. The broad applicability of our framework across domains is demonstrated by an instantiation for various biological and medical image analysis use cases
Common Limitations of Image Processing Metrics:A Picture Story
While the importance of automatic image analysis is continuously increasing,
recent meta-research revealed major flaws with respect to algorithm validation.
Performance metrics are particularly key for meaningful, objective, and
transparent performance assessment and validation of the used automatic
algorithms, but relatively little attention has been given to the practical
pitfalls when using specific metrics for a given image analysis task. These are
typically related to (1) the disregard of inherent metric properties, such as
the behaviour in the presence of class imbalance or small target structures,
(2) the disregard of inherent data set properties, such as the non-independence
of the test cases, and (3) the disregard of the actual biomedical domain
interest that the metrics should reflect. This living dynamically document has
the purpose to illustrate important limitations of performance metrics commonly
applied in the field of image analysis. In this context, it focuses on
biomedical image analysis problems that can be phrased as image-level
classification, semantic segmentation, instance segmentation, or object
detection task. The current version is based on a Delphi process on metrics
conducted by an international consortium of image analysis experts from more
than 60 institutions worldwide.Comment: This is a dynamic paper on limitations of commonly used metrics. The
current version discusses metrics for image-level classification, semantic
segmentation, object detection and instance segmentation. For missing use
cases, comments or questions, please contact [email protected] or
[email protected]. Substantial contributions to this document will be
acknowledged with a co-authorshi
Understanding metric-related pitfalls in image analysis validation
Validation metrics are key for the reliable tracking of scientific progress
and for bridging the current chasm between artificial intelligence (AI)
research and its translation into practice. However, increasing evidence shows
that particularly in image analysis, metrics are often chosen inadequately in
relation to the underlying research problem. This could be attributed to a lack
of accessibility of metric-related knowledge: While taking into account the
individual strengths, weaknesses, and limitations of validation metrics is a
critical prerequisite to making educated choices, the relevant knowledge is
currently scattered and poorly accessible to individual researchers. Based on a
multi-stage Delphi process conducted by a multidisciplinary expert consortium
as well as extensive community feedback, the present work provides the first
reliable and comprehensive common point of access to information on pitfalls
related to validation metrics in image analysis. Focusing on biomedical image
analysis but with the potential of transfer to other fields, the addressed
pitfalls generalize across application domains and are categorized according to
a newly created, domain-agnostic taxonomy. To facilitate comprehension,
illustrations and specific examples accompany each pitfall. As a structured
body of information accessible to researchers of all levels of expertise, this
work enhances global comprehension of a key topic in image analysis validation.Comment: Shared first authors: Annika Reinke, Minu D. Tizabi; shared senior
authors: Paul F. J\"ager, Lena Maier-Hei
Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV
A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe
Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV
A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV
- …