46 research outputs found
High-precision determination of the critical exponents for the lambda-transition of 4He by improved high-temperature expansion
We determine the critical exponents for the XY universality class in three
dimensions, which is expected to describe the -transition in He.
They are obtained from the analysis of high-temperature series computed for a
two-component model. The parameter is fixed such that
the leading corrections to scaling vanish. We obtain ,
, . These estimates improve previous
theoretical determinations and agree with the more precise experimental results
for liquid Helium.Comment: 8 pages, revte
Detailed Examination of Transport Coefficients in Cubic-Plus-Quartic Oscillator Chains
We examine the thermal conductivity and bulk viscosity of a one-dimensional
(1D) chain of particles with cubic-plus-quartic interparticle potentials and no
on-site potentials. This system is equivalent to the FPU-alpha beta system in a
subset of its parameter space. We identify three distinct frequency regimes
which we call the hydrodynamic regime, the perturbative regime and the
collisionless regime. In the lowest frequency regime (the hydrodynamic regime)
heat is transported ballistically by long wavelength sound modes. The model
that we use to describe this behaviour predicts that as the frequency goes to
zero the frequency dependent bulk viscosity and the frequency dependent thermal
conductivity should diverge with the same power law dependence on frequency.
Thus, we can define the bulk Prandtl number as the ratio of the bulk viscosity
to the thermal conductivity (with suitable prefactors to render it
dimensionless). This dimensionless ratio should approach a constant value as
frequency goes to zero. We use mode-coupling theory to predict the zero
frequency limit. Values of the bulk Prandtl number from simulations are in
agreement with these predictions over a wide range of system parameters. In the
middle frequency regime, which we call the perturbative regime, heat is
transported by sound modes which are damped by four-phonon processes. We call
the highest frequency regime the collisionless regime since at these
frequencies the observing times are much shorter than the characteristic
relaxation times of phonons. The perturbative and collisionless regimes are
discussed in detail in the appendices.Comment: Latex with references in .bib file. 36 pages, 8 figures. Submitted to
J. Stat. Phys. on Sept. 2
Cluster Dynamical Mean Field Theories
Cluster Dynamical Mean Field Theories are analyzed in terms of their
semiclassical limit and their causality properties, and a translation invariant
formulation of the cellular dynamical mean field theory, PCDMFT, is presented.
The semiclassical limit of the cluster methods is analyzed by applying them to
the Falikov-Kimball model in the limit of infinite Hubbard interaction U where
they map to different classical cluster schemes for the Ising model.
Furthermore the Cutkosky-t'Hooft-Veltman cutting equations are generalized and
derived for non translation invariant systems using the Schwinger-Keldysh
formalism. This provides a general setting to discuss causality properties of
cluster methods. To illustrate the method, we prove that PCDMFT is causal while
the nested cluster schemes (NCS) in general and the pair scheme in particular
are not. Constraints on further extension of these schemes are discussed.Comment: 26 page
On the nature of the finite-temperature transition in QCD
We discuss the nature of the finite-temperature transition in QCD with N_f
massless flavors. Universality arguments show that a continuous (second-order)
transition must be related to a 3-D universality class characterized by a
complex N_f X N_f matrix order parameter and by the symmetry-breaking pattern
[SU(N_f)_L X SU(N_f)_R]/Z(N_f)_V -> SU(N_f)_V/Z(N_f)_V, or [U(N_f)_L X
U(N_f)_R]/U(1)_V -> U(N_f)_V/U(1)_V if the U(1)_A symmetry is effectively
restored at T_c. The existence of any of these universality classes requires
the presence of a stable fixed point in the corresponding 3-D Phi^4 theory with
the expected symmetry-breaking pattern. Otherwise, the transition is of first
order. In order to search for stable fixed points in these Phi^4 theories, we
exploit a 3-D perturbative approach in which physical quantities are expanded
in powers of appropriate renormalized quartic couplings. We compute the
corresponding Callan-Symanzik beta-functions to six loops. We also determine
the large-order behavior to further constrain the analysis. No stable fixed
point is found, except for N_f=2, corresponding to the symmetry-breaking
pattern [SU(2)_L X SU(2)_R]/Z(2)_V -> SU(2)_V/Z(2)_V equivalent to O(4) ->
O(3). Our results confirm and put on a firmer ground earlier analyses performed
close to four dimensions, based on first-order calculations in the framework of
the epsilon=4-d expansion. These results indicate that the finite-temperature
phase transition in QCD is of first order for N_f>2. A continuous transition is
allowed only for N_f=2. But, since the theory with symmetry-breaking pattern
[U(2)_L X U(2)_R]/U(1)_V -> U(2)_V/U(1)_V does not have stable fixed points,
the transition can be continuous only if the effective breaking of the U(1)_A
symmetry is sufficiently large.Comment: 30 pages, 3 figs, minor correction
The finite-temperature chiral transition in QCD with adjoint fermions
We study the nature of the finite-temperature chiral transition in QCD with
N_f light quarks in the adjoint representation (aQCD). Renormalization-group
arguments show that the transition can be continuous if a stable fixed point
exists in the renormalization-group flow of the corresponding three-dimensional
Phi^4 theory with a complex 2N_f x 2N_f symmetric matrix field and
symmetry-breaking pattern SU(2N_f)->SO(2N_f). This issue is investigated by
exploiting two three-dimensional perturbative approaches, the massless
minimal-subtraction scheme without epsilon expansion and a massive scheme in
which correlation functions are renormalized at zero momentum. We compute the
renormalization-group functions in the two schemes to five and six loops
respectively, and determine their large-order behavior.
The analyses of the series show the presence of a stable three-dimensional
fixed point characterized by the symmetry-breaking pattern SU(4)->SO(4). This
fixed point does not appear in an epsilon-expansion analysis and therefore does
not exist close to four dimensions. The finite-temperature chiral transition in
two-flavor aQCD can therefore be continuous; in this case its critical behavior
is determined by this new SU(4)/SO(4) universality class. One-flavor aQCD may
show a more complex phase diagram with two phase transitions. One of them, if
continuous, should belong to the O(3) vector universality class.Comment: 36 page
Extension to order of the high-temperature expansions for the spin-1/2 Ising model on the simple-cubic and the body-centered-cubic lattices
Using a renormalized linked-cluster-expansion method, we have extended to
order the high-temperature series for the susceptibility
and the second-moment correlation length of the spin-1/2 Ising models on
the sc and the bcc lattices. A study of these expansions yields updated direct
estimates of universal parameters, such as exponents and amplitude ratios,
which characterize the critical behavior of and . Our best
estimates for the inverse critical temperatures are
and . For the
susceptibility exponent we get and for the correlation
length exponent we get .
The ratio of the critical amplitudes of above and below the critical
temperature is estimated to be . The analogous ratio for
is estimated to be . For the correction-to-scaling
amplitude ratio we obtain .Comment: Misprints corrected, 8 pages, latex, no figure
Critical structure factor in Ising systems
We perform a large-scale Monte Carlo simulation of the three-dimensional
Ising model on simple cubic lattices of size L^3 with L=128 and 256. We
determine the corresponding structure factor (Fourier transform of the
two-point function) and compare it with several approximations and with
experimental results. We also compute the turbidity as a function of the
momentum of the incoming radiation, focusing in particular on the deviations
from the Ornstein-Zernicke expression of Puglielli and Ford.Comment: 16 page
Updated tests of scaling and universality for the spin-spin correlations in the 2D and 3D spin-S Ising models using high-temperature expansions
We have extended, from order 12 through order 25, the high-temperature series
expansions (in zero magnetic field) for the spin-spin correlations of the
spin-S Ising models on the square, simple-cubic and body-centered-cubic
lattices. On the basis of this large set of data, we confirm accurately the
validity of the scaling and universality hypotheses by resuming several tests
which involve the correlation function, its moments and the exponential or the
second-moment correlation-lengths.Comment: 21 pages, 8 figure
25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple cubic lattice
25th-order high-temperature series are computed for a general
nearest-neighbor three-dimensional Ising model with arbitrary potential on the
simple cubic lattice. In particular, we consider three improved potentials
characterized by suppressed leading scaling corrections. Critical exponents are
extracted from high-temperature series specialized to improved potentials,
obtaining , , ,
, , . Moreover, biased
analyses of the 25th-order series of the standard Ising model provide the
estimate for the exponent associated with the leading scaling
corrections. By the same technique, we study the small-magnetization expansion
of the Helmholtz free energy. The results are then applied to the construction
of parametric representations of the critical equation of state, using a
systematic approach based on a global stationarity condition. Accurate
estimates of several universal amplitude ratios are also presented.Comment: 40 pages, 15 figure
Critical behavior of the two-dimensional N-component Landau-Ginzburg Hamiltonian with cubic anisotropy
We study the two-dimensional N-component Landau-Ginzburg Hamiltonian with
cubic anisotropy. We compute and analyze the fixed-dimension perturbative
expansion of the renormalization-group functions to four loops. The relations
of these models with N-color Ashkin-Teller models, discrete cubic models,
planar model with fourth order anisotropy, and structural phase transition in
adsorbed monolayers are discussed. Our results for N=2 (XY model with cubic
anisotropy) are compatible with the existence of a line of fixed points joining
the Ising and the O(2) fixed points. Along this line the exponent has
the constant value 1/4, while the exponent runs in a continuous and
monotonic way from 1 to (from Ising to O(2)). For N\geq 3 we find a
cubic fixed point in the region , which is marginally stable or
unstable according to the sign of the perturbation. For the physical relevant
case of N=3 we find the exponents and at the cubic
transition.Comment: 14 pages, 9 figure