46 research outputs found

    High-precision determination of the critical exponents for the lambda-transition of 4He by improved high-temperature expansion

    Full text link
    We determine the critical exponents for the XY universality class in three dimensions, which is expected to describe the λ\lambda-transition in 4{}^4He. They are obtained from the analysis of high-temperature series computed for a two-component λϕ4\lambda\phi^4 model. The parameter λ\lambda is fixed such that the leading corrections to scaling vanish. We obtain ν=0.67166(55)\nu = 0.67166(55), γ=1.3179(11)\gamma = 1.3179(11), α=0.0150(17)\alpha=-0.0150(17). These estimates improve previous theoretical determinations and agree with the more precise experimental results for liquid Helium.Comment: 8 pages, revte

    Detailed Examination of Transport Coefficients in Cubic-Plus-Quartic Oscillator Chains

    Full text link
    We examine the thermal conductivity and bulk viscosity of a one-dimensional (1D) chain of particles with cubic-plus-quartic interparticle potentials and no on-site potentials. This system is equivalent to the FPU-alpha beta system in a subset of its parameter space. We identify three distinct frequency regimes which we call the hydrodynamic regime, the perturbative regime and the collisionless regime. In the lowest frequency regime (the hydrodynamic regime) heat is transported ballistically by long wavelength sound modes. The model that we use to describe this behaviour predicts that as the frequency goes to zero the frequency dependent bulk viscosity and the frequency dependent thermal conductivity should diverge with the same power law dependence on frequency. Thus, we can define the bulk Prandtl number as the ratio of the bulk viscosity to the thermal conductivity (with suitable prefactors to render it dimensionless). This dimensionless ratio should approach a constant value as frequency goes to zero. We use mode-coupling theory to predict the zero frequency limit. Values of the bulk Prandtl number from simulations are in agreement with these predictions over a wide range of system parameters. In the middle frequency regime, which we call the perturbative regime, heat is transported by sound modes which are damped by four-phonon processes. We call the highest frequency regime the collisionless regime since at these frequencies the observing times are much shorter than the characteristic relaxation times of phonons. The perturbative and collisionless regimes are discussed in detail in the appendices.Comment: Latex with references in .bib file. 36 pages, 8 figures. Submitted to J. Stat. Phys. on Sept. 2

    Cluster Dynamical Mean Field Theories

    Full text link
    Cluster Dynamical Mean Field Theories are analyzed in terms of their semiclassical limit and their causality properties, and a translation invariant formulation of the cellular dynamical mean field theory, PCDMFT, is presented. The semiclassical limit of the cluster methods is analyzed by applying them to the Falikov-Kimball model in the limit of infinite Hubbard interaction U where they map to different classical cluster schemes for the Ising model. Furthermore the Cutkosky-t'Hooft-Veltman cutting equations are generalized and derived for non translation invariant systems using the Schwinger-Keldysh formalism. This provides a general setting to discuss causality properties of cluster methods. To illustrate the method, we prove that PCDMFT is causal while the nested cluster schemes (NCS) in general and the pair scheme in particular are not. Constraints on further extension of these schemes are discussed.Comment: 26 page

    On the nature of the finite-temperature transition in QCD

    Full text link
    We discuss the nature of the finite-temperature transition in QCD with N_f massless flavors. Universality arguments show that a continuous (second-order) transition must be related to a 3-D universality class characterized by a complex N_f X N_f matrix order parameter and by the symmetry-breaking pattern [SU(N_f)_L X SU(N_f)_R]/Z(N_f)_V -> SU(N_f)_V/Z(N_f)_V, or [U(N_f)_L X U(N_f)_R]/U(1)_V -> U(N_f)_V/U(1)_V if the U(1)_A symmetry is effectively restored at T_c. The existence of any of these universality classes requires the presence of a stable fixed point in the corresponding 3-D Phi^4 theory with the expected symmetry-breaking pattern. Otherwise, the transition is of first order. In order to search for stable fixed points in these Phi^4 theories, we exploit a 3-D perturbative approach in which physical quantities are expanded in powers of appropriate renormalized quartic couplings. We compute the corresponding Callan-Symanzik beta-functions to six loops. We also determine the large-order behavior to further constrain the analysis. No stable fixed point is found, except for N_f=2, corresponding to the symmetry-breaking pattern [SU(2)_L X SU(2)_R]/Z(2)_V -> SU(2)_V/Z(2)_V equivalent to O(4) -> O(3). Our results confirm and put on a firmer ground earlier analyses performed close to four dimensions, based on first-order calculations in the framework of the epsilon=4-d expansion. These results indicate that the finite-temperature phase transition in QCD is of first order for N_f>2. A continuous transition is allowed only for N_f=2. But, since the theory with symmetry-breaking pattern [U(2)_L X U(2)_R]/U(1)_V -> U(2)_V/U(1)_V does not have stable fixed points, the transition can be continuous only if the effective breaking of the U(1)_A symmetry is sufficiently large.Comment: 30 pages, 3 figs, minor correction

    The finite-temperature chiral transition in QCD with adjoint fermions

    Full text link
    We study the nature of the finite-temperature chiral transition in QCD with N_f light quarks in the adjoint representation (aQCD). Renormalization-group arguments show that the transition can be continuous if a stable fixed point exists in the renormalization-group flow of the corresponding three-dimensional Phi^4 theory with a complex 2N_f x 2N_f symmetric matrix field and symmetry-breaking pattern SU(2N_f)->SO(2N_f). This issue is investigated by exploiting two three-dimensional perturbative approaches, the massless minimal-subtraction scheme without epsilon expansion and a massive scheme in which correlation functions are renormalized at zero momentum. We compute the renormalization-group functions in the two schemes to five and six loops respectively, and determine their large-order behavior. The analyses of the series show the presence of a stable three-dimensional fixed point characterized by the symmetry-breaking pattern SU(4)->SO(4). This fixed point does not appear in an epsilon-expansion analysis and therefore does not exist close to four dimensions. The finite-temperature chiral transition in two-flavor aQCD can therefore be continuous; in this case its critical behavior is determined by this new SU(4)/SO(4) universality class. One-flavor aQCD may show a more complex phase diagram with two phase transitions. One of them, if continuous, should belong to the O(3) vector universality class.Comment: 36 page

    Extension to order β23\beta^{23} of the high-temperature expansions for the spin-1/2 Ising model on the simple-cubic and the body-centered-cubic lattices

    Get PDF
    Using a renormalized linked-cluster-expansion method, we have extended to order β23\beta^{23} the high-temperature series for the susceptibility χ\chi and the second-moment correlation length ξ\xi of the spin-1/2 Ising models on the sc and the bcc lattices. A study of these expansions yields updated direct estimates of universal parameters, such as exponents and amplitude ratios, which characterize the critical behavior of χ\chi and ξ\xi. Our best estimates for the inverse critical temperatures are βcsc=0.221654(1)\beta^{sc}_c=0.221654(1) and βcbcc=0.1573725(6)\beta^{bcc}_c=0.1573725(6). For the susceptibility exponent we get γ=1.2375(6)\gamma=1.2375(6) and for the correlation length exponent we get ν=0.6302(4)\nu=0.6302(4). The ratio of the critical amplitudes of χ\chi above and below the critical temperature is estimated to be C+/C=4.762(8)C_+/C_-=4.762(8). The analogous ratio for ξ\xi is estimated to be f+/f=1.963(8)f_+/f_-=1.963(8). For the correction-to-scaling amplitude ratio we obtain aξ+/aχ+=0.87(6)a^+_{\xi}/a^+_{\chi}=0.87(6).Comment: Misprints corrected, 8 pages, latex, no figure

    Critical structure factor in Ising systems

    Get PDF
    We perform a large-scale Monte Carlo simulation of the three-dimensional Ising model on simple cubic lattices of size L^3 with L=128 and 256. We determine the corresponding structure factor (Fourier transform of the two-point function) and compare it with several approximations and with experimental results. We also compute the turbidity as a function of the momentum of the incoming radiation, focusing in particular on the deviations from the Ornstein-Zernicke expression of Puglielli and Ford.Comment: 16 page

    Updated tests of scaling and universality for the spin-spin correlations in the 2D and 3D spin-S Ising models using high-temperature expansions

    Full text link
    We have extended, from order 12 through order 25, the high-temperature series expansions (in zero magnetic field) for the spin-spin correlations of the spin-S Ising models on the square, simple-cubic and body-centered-cubic lattices. On the basis of this large set of data, we confirm accurately the validity of the scaling and universality hypotheses by resuming several tests which involve the correlation function, its moments and the exponential or the second-moment correlation-lengths.Comment: 21 pages, 8 figure

    25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple cubic lattice

    Full text link
    25th-order high-temperature series are computed for a general nearest-neighbor three-dimensional Ising model with arbitrary potential on the simple cubic lattice. In particular, we consider three improved potentials characterized by suppressed leading scaling corrections. Critical exponents are extracted from high-temperature series specialized to improved potentials, obtaining γ=1.2373(2)\gamma=1.2373(2), ν=0.63012(16)\nu=0.63012(16), α=0.1096(5)\alpha=0.1096(5), η=0.03639(15)\eta=0.03639(15), β=0.32653(10)\beta=0.32653(10), δ=4.7893(8)\delta=4.7893(8). Moreover, biased analyses of the 25th-order series of the standard Ising model provide the estimate Δ=0.52(3)\Delta=0.52(3) for the exponent associated with the leading scaling corrections. By the same technique, we study the small-magnetization expansion of the Helmholtz free energy. The results are then applied to the construction of parametric representations of the critical equation of state, using a systematic approach based on a global stationarity condition. Accurate estimates of several universal amplitude ratios are also presented.Comment: 40 pages, 15 figure

    Critical behavior of the two-dimensional N-component Landau-Ginzburg Hamiltonian with cubic anisotropy

    Full text link
    We study the two-dimensional N-component Landau-Ginzburg Hamiltonian with cubic anisotropy. We compute and analyze the fixed-dimension perturbative expansion of the renormalization-group functions to four loops. The relations of these models with N-color Ashkin-Teller models, discrete cubic models, planar model with fourth order anisotropy, and structural phase transition in adsorbed monolayers are discussed. Our results for N=2 (XY model with cubic anisotropy) are compatible with the existence of a line of fixed points joining the Ising and the O(2) fixed points. Along this line the exponent η\eta has the constant value 1/4, while the exponent ν\nu runs in a continuous and monotonic way from 1 to \infty (from Ising to O(2)). For N\geq 3 we find a cubic fixed point in the region u,v0u, v \geq 0, which is marginally stable or unstable according to the sign of the perturbation. For the physical relevant case of N=3 we find the exponents η=0.17(8)\eta=0.17(8) and ν=1.3(3)\nu=1.3(3) at the cubic transition.Comment: 14 pages, 9 figure
    corecore