4 research outputs found
IKKβ-NF-κB signaling in adult chondrocytes promotes the onset of age-related osteoarthritis in mice.
Canonical nuclear factor κB (NF-κB) signaling mediated by homo- and heterodimers of the NF-κB subunits p65 (RELA) and p50 (NFKB1) is associated with age-related pathologies and with disease progression in posttraumatic models of osteoarthritis (OA). Here, we established that NF-κB signaling in articular chondrocytes increased with age, concomitant with the onset of spontaneous OA in wild-type mice. Chondrocyte-specific expression of a constitutively active form of inhibitor of κB kinase β (IKKβ) in young adult mice accelerated the onset of the OA-like phenotype observed in aging wild-type mice, including degenerative changes in the articular cartilage, synovium, and menisci. Both in vitro and in vivo, chondrocytes expressing activated IKKβ had a proinflammatory secretory phenotype characterized by markers typically associated with the senescence-associated secretory phenotype (SASP). Expression of these factors was differentially regulated by p65, which contains a transactivation domain, and p50, which does not. Whereas the loss of p65 blocked the induction of genes encoding SASP factors in chondrogenic cells treated with interleukin-1β (IL-1β) in vitro, the loss of p50 enhanced the IL-1β–induced expression of some SASP factors. The loss of p50 further exacerbated cartilage degeneration in mice with chondrocyte-specific IKKβ activation. Overall, our data reveal that IKKβ-mediated activation of p65 can promote OA onset and that p50 may limit cartilage degeneration in settings of joint inflammation including advanced age
Biological underpinnings for lifelong learning machines
Biological organisms learn from interactions with their environment throughout their lifetime. For artificial systems to successfully act and adapt in the real world, it is desirable to similarly be able to learn on a continual basis. This challenge is known as lifelong learning, and remains to a large extent unsolved. In this Perspective article, we identify a set of key capabilities that artificial systems will need to achieve lifelong learning. We describe a number of biological mechanisms, both neuronal and non-neuronal, that help explain how organisms solve these challenges, and present examples of biologically inspired models and biologically plausible mechanisms that have been applied to artificial systems in the quest towards development of lifelong learning machines. We discuss opportunities to further our understanding and advance the state of the art in lifelong learning, aiming to bridge the gap between natural and artificial intelligence
2015 Brainhack Proceedings
Table of contents I1 Introduction to the 2015 Brainhack Proceedings R. Cameron Craddock, Pierre Bellec, Daniel S. Margules, B. Nolan Nichols, Jörg P. Pfannmöller A1 Distributed collaboration: the case for the enhancement of Brainspell’s interface AmanPreet Badhwar, David Kennedy, Jean-Baptiste Poline, Roberto Toro A2 Advancing open science through NiData Ben Cipollini, Ariel Rokem A3 Integrating the Brain Imaging Data Structure (BIDS) standard into C-PAC Daniel Clark, Krzysztof J. Gorgolewski, R. Cameron Craddock A4 Optimized implementations of voxel-wise degree centrality and local functional connectivity density mapping in AFNI R. Cameron Craddock, Daniel J. Clark A5 LORIS: DICOM anonymizer Samir Das, Cécile Madjar, Ayan Sengupta, Zia Mohades A6 Automatic extraction of academic collaborations in neuroimaging Sebastien Dery A7 NiftyView: a zero-footprint web application for viewing DICOM and NIfTI files Weiran Deng A8 Human Connectome Project Minimal Preprocessing Pipelines to Nipype Eric Earl, Damion V. Demeter, Kate Mills, Glad Mihai, Luka Ruzic, Nick Ketz, Andrew Reineberg, Marianne C. Reddan, Anne-Lise Goddings, Javier Gonzalez-Castillo, Krzysztof J. Gorgolewski A9 Generating music with resting-state fMRI data Caroline Froehlich, Gil Dekel, Daniel S. Margulies, R. Cameron Craddock A10 Highly comparable time-series analysis in Nitime Ben D. Fulcher A11 Nipype interfaces in CBRAIN Tristan Glatard, Samir Das, Reza Adalat, Natacha Beck, Rémi Bernard, Najmeh Khalili-Mahani, Pierre Rioux, Marc-Étienne Rousseau, Alan C. Evans A12 DueCredit: automated collection of citations for software, methods, and data Yaroslav O. Halchenko, Matteo Visconti di Oleggio Castello A13 Open source low-cost device to register dog’s heart rate and tail movement Raúl Hernández-Pérez, Edgar A. Morales, Laura V. Cuaya A14 Calculating the Laterality Index Using FSL for Stroke Neuroimaging Data Kaori L. Ito, Sook-Lei Liew A15 Wrapping FreeSurfer 6 for use in high-performance computing environments Hans J. Johnson A16 Facilitating big data meta-analyses for clinical neuroimaging through ENIGMA wrapper scripts Erik Kan, Julia Anglin, Michael Borich, Neda Jahanshad, Paul Thompson, Sook-Lei Liew A17 A cortical surface-based geodesic distance package for Python Daniel S Margulies, Marcel Falkiewicz, Julia M Huntenburg A18 Sharing data in the cloud David O’Connor, Daniel J. Clark, Michael P. Milham, R. Cameron Craddock A19 Detecting task-based fMRI compliance using plan abandonment techniques Ramon Fraga Pereira, Anibal Sólon Heinsfeld, Alexandre Rosa Franco, Augusto Buchweitz, Felipe Meneguzzi A20 Self-organization and brain function Jörg P. Pfannmöller, Rickson Mesquita, Luis C.T. Herrera, Daniela Dentico A21 The Neuroimaging Data Model (NIDM) API Vanessa Sochat, B Nolan Nichols A22 NeuroView: a customizable browser-base utility Anibal Sólon Heinsfeld, Alexandre Rosa Franco, Augusto Buchweitz, Felipe Meneguzzi A23 DIPY: Brain tissue classification Julio E. Villalon-Reina, Eleftherios Garyfallidi