102 research outputs found
Design and validation of an osteochondral bioreactor for the screening of treatments for osteoarthritis
Bioreactors are systems that can be used to monitor the response of tissues and cells to candidate drugs. Building on the experience developed in the creation of an osteochondral bioreactor, we have designed a new 3D printed system, which allows optical access to the cells throughout testing for in line monitoring. Because of the use of 3D printing, the fluidics could be developed in the third dimension, thus maintaining the footprint of a single well of a typical 96 well plate. This new design was optimized to achieve the maximum fluid transport through the central chamber, which corresponds to optimal nutrient or drug exposure. This optimization was achieved by altering each dimension of the bioreactor fluid path. A physical model for optimized drug exposure was then created and tested
SAP Regulates TH2 Differentiation and PKC-θ-Mediated Activation of NF-κB1
AbstractXLP is caused by mutations affecting SAP, an adaptor that recruits Fyn to SLAM family receptors. SAP-deficient mice recapitulate features of XLP, including increased T cell activation and decreased humoral responses post-infection. SAP-deficient T cells also show increased TCR-induced IFN-γ and decreased TH2 cytokine production. We demonstrate that the defect in IL-4 secretion in SAP-deficient T cells is independent of increased IFN-γ production. SAP-deficient cells respond normally to polarizing cytokines, yet show impaired TCR-mediated induction of GATA-3 and IL-4. Examination of TCR signaling revealed normal Ca2+ mobilization and ERK activation in SAP-deficient cells, but decreased PKC-θ recruitment, Bcl-10 phosphorylation, IκB-α degradation, and nuclear NF-κB1/p50 levels. Similar defects were observed in Fyn-deficient cells. SLAM engagement amplified PKC-θ recruitment in wt but not SAP- or Fyn-deficient cells, arguing that a SAP/Fyn-mediated pathway enhances PKC-θ/NF-κB1 activation and suggesting a role for this pathway in TH2 regulation
Emotion regulation in emerging adults with major depressive disorder and frequent cannabis use
In people with mental health issues, approximately 20% have co-occurring substance use, often involving cannabis. Although emotion regulation can be affected both by major depressive disorder (MDD) and by cannabis use, the relationship among all three factors is unknown. In this study, we used fMRI to evaluate the effect that cannabis use and MDD have on brain activation during an emotion regulation task. Differences were assessed in 74 emerging adults aged 16–23 with and without MDD who either used or did not use cannabis. Severity of depressive symptoms, emotion regulation style, and age of cannabis use onset were also measured. Both MDD and cannabis use interacted with the emotion regulation task in the left temporal lobe, however the location of the interaction differed for each factor. Specifically, MDD showed an interaction with emotion regulation in the middle temporal gyrus, whereas cannabis use showed an interaction in the superior temporal gyrus. Emotion regulation style predicted activity in the right superior frontal gyrus, however, this did not interact with MDD or cannabis use. Severity of depressive symptoms interacted with the emotion regulation task in the left middle temporal gyrus. The results highlight the influence of cannabis use and MDD on emotion regulation processing, suggesting that both may have a broader impact on the brain than previously thought
Ligand-Induced Proton Transfer and Low-Barrier Hydrogen Bond Revealed by X-ray Crystallography
Ligand binding can change the pKa of protein residues and influence enzyme catalysis. Herein, we report three sub-Angstrom resolution X-ray crystal structures of CTX-M \u3b2-lactamase, representing three stages of the enzymatic pathway, apo protein (0.79 \uc5), pre-covalent complex (0.89 \uc5), and acylation transition state analog (0.84 \uc5). The binding of a non-covalent ligand induces a proton transfer from the catalytic Ser70 to the general base Glu166, and the formation of a low-barrier hydrogen bond (LBHB) between Ser70 and Lys73. QM/MM reaction path calculations determined the proton transfer barrier between Ser70 and Lys73 to be 1.53 kcal/mol, further confirming the presence of a LBHB. This LBHB is absent in the other two structures. Our data represents the first evidence of a direct and transient LBHB stabilizing a nucleophilic serine, as hypothesized by Cleland and Kreevoy. These results have important implications for the study of enzyme mechanisms as well as protein-inhibitor interactions
Early Social Cognition: Alternatives to Implicit Mindreading
According to the BD-model of mindreading, we primarily understand others in terms of beliefs and desires. In this article we review a number of objections against explicit versions of the BD-model, and discuss the prospects of using its implicit counterpart as an explanatory model of early emerging socio-cognitive abilities. Focusing on recent findings on so-called ‘implicit’ false belief understanding, we put forward a number of considerations against the adoption of an implicit BD-model. Finally, we explore a different way to make sense of implicit false belief understanding in terms of keeping track of affordances
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008
SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Novel genetic loci underlying human intracranial volume identified through genome-wide association
Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth
General Principles for the Validation of Proarrhythmia Risk Prediction Models: An Extension of the CiPA In Silico Strategy
This white paper presents principles for validating proarrhythmia risk prediction models for regulatory use as discussed at the In Silico Breakout Session of a Cardiac Safety Research Consortium/Health and Environmental Sciences Institute/US Food and Drug Administration–sponsored Think Tank Meeting on May 22, 2018. The meeting was convened to evaluate the progress in the development of a new cardiac safety paradigm, the Comprehensive in Vitro Proarrhythmia Assay (CiPA). The opinions regarding these principles reflect the collective views of those who participated in the discussion of this topic both at and after the breakout session. Although primarily discussed in the context of in silico models, these principles describe the interface between experimental input and model‐based interpretation and are intended to be general enough to be applied to other types of nonclinical models for proarrhythmia assessment. This document was developed with the intention of providing a foundation for more consistency and harmonization in developing and validating different models for proarrhythmia risk prediction using the example of the CiPA paradigm
Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.
Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
- …