10,180 research outputs found

    Superlattice Magnetophonon Resonances in Strongly Coupled InAs/GaSb Superlattices

    Full text link
    We report an experimental study of miniband magnetoconduction in semiconducting InAs/GaSb superlattices. For samples with miniband widths below the longitudinal optical phonon energy we identify a new superlattice magnetophonon resonance (SLMPR) caused by resonant scattering of electrons across the mini-Brillouin zone. This new resonant feature arises directly from the drift velocity characteristics of the superlattice dispersion and total magnetic quantisation of the superlattice Landau level minibands.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Early diffusion evidence of retrograde transsynaptic degeneration in the human visual system

    Get PDF
    We investigated whether diffusion tensor imaging (DTI) indices of white matter integrity would offer early markers of retrograde transsynaptic degeneration (RTD) in the visual system after stroke Objective: We investigated whether diffusion tensor imaging (DTI) indices of white matter integrity would offer early markers of retrograde transsynaptic degeneration (RTD) in the visual system after stroke. Methods: We performed a prospective longitudinal analysis of the sensitivity of DTI markers of optic tract health in 12 patients with postsynaptic visual pathway stroke, 12 stroke controls, and 28 healthy controls. We examined group differences in (1) optic tract fractional anisotropy (FA-asymmetry), (2) perimetric measures of visual impairment, and (3) the relationship between FA-asymmetry and perimetric assessment. Results: FA-asymmetry was higher in patients with visual pathway lesions than in control groups. These differences were evident 3 months from the time of injury and did not change significantly at 12 months. Perimetric measures showed evidence of impairment in participants with visual pathway stroke but not in control groups. A significant association was observed between FA-asymmetry and perimetric measures at 3 months, which persisted at 12 months. Conclusions: DTI markers of RTD are apparent 3 months from the time of injury. This represents the earliest noninvasive evidence of RTD in any species. Furthermore, these measures associate with measures of visual impairment. DTI measures offer a reproducible, noninvasive, and sensitive method of investigating RTD and its role in visual impairment

    Interaction of surface acoustic waves with a two-dimensional electron gas in the presence of spin splitting of the Landau bands

    Full text link
    The absorption and variation of the velocity of a surface acoustic wave of frequency ff= 30 MHz interacting with two-dimensional electrons are investigated in GaAs/AlGaAs heterostructures with an electron density n=(1.3−2.8)×1011cm−2n=(1.3 - 2.8) \times 10^{11} cm^{-2} at TT=1.5 - 4.2 K in magnetic fields up to 7 T. Characteristic features associated with spin splitting of the Landau level are observed. The effective g factor and the width of the spin-split Landau bands are determined: g∗≃5g^* \simeq 5 and AA=0.6 meV. The greater width of the orbital-split Landau bands (2 meV) relative to the spin-split bands is attributed to different shielding of the random fluctuation potential of charged impurities by 2D electrons. The mechanisms of the nonlinearities manifested in the dependence of the absorption and the velocity increment of the SAW on the SAW power in the presence of spin splitting of the Landau levels are investigated.Comment: Revtex 5 pages + 5 EPS Figures, v.2 - minor corrections in text and pic

    Error-proof programmable self-assembly of DNA-nanoparticle clusters

    Full text link
    We study theoretically a new generic scheme of programmable self-assembly of nanoparticles into clusters of desired geometry. The problem is motivated by the feasibility of highly selective DNA-mediated interactions between colloidal particles. By analyzing both a simple generic model and a more realistic description of a DNA-colloidal system, we demonstrate that it is possible to suppress the glassy behavior of the system, and to make the self-assembly nearly error-proof. This regime requires a combination of stretchable interparticle linkers (e.g. sufficiently long DNA), and a soft repulsive potential. The jamming phase diagram and the error probability are computed for several types of clusters. The prospects for the experimental implementation of our scheme are also discussed. PACS numbers: 81.16.Dn, 87.14.Gg, 36.40.EiComment: 6 pages, 4 figures, v2: substantially revised version, added journal re

    Angularly localized Skyrmions

    Full text link
    Quantized Skyrmions with baryon numbers B=1,2B=1,2 and 4 are considered and angularly localized wavefunctions for them are found. By combining a few low angular momentum states, one can construct a quantum state whose spatial density is close to that of the classical Skyrmion, and has the same symmetries. For the B=1 case we find the best localized wavefunction among linear combinations of j=1/2j=1/2 and j=3/2j=3/2 angular momentum states. For B=2, we find that the j=1j=1 ground state has toroidal symmetry and a somewhat reduced localization compared to the classical solution. For B=4, where the classical Skyrmion has cubic symmetry, we construct cubically symmetric quantum states by combining the j=0j=0 ground state with the lowest rotationally excited j=4j=4 state. We use the rational map approximation to compare the classical and quantum baryon densities in the B=2 and B=4 cases.Comment: 22 page

    Reparametrising the Skyrme Model using the Lithium-6 Nucleus

    Get PDF
    The minimal energy B=6 solution of the Skyrme model is a static soliton with D4dD_{4d} symmetry. The symmetries of the solution imply that the quantum numbers of the ground state are the same as those of the Lithium-6 nucleus. This identification is considered further by obtaining expressions for the mean charge radius and quadrupole moment, dependent only on the Skyrme model parameters ee (a dimensionless constant) and FπF_\pi (the pion decay constant). The optimal values of these parameters have often been deliberated upon, and we propose, for B>2B>2, changing them from those which are most commonly accepted. We obtain specific values for these parameters for B=6, by matching with properties of the Lithium-6 nucleus. We find further support for the new values by reconsidering the α\alpha-particle and deuteron as quantized B=4 and B=2 Skyrmions.Comment: 18 page

    Effects of virtual acoustics on dynamic auditory distance perception

    Get PDF
    Sound propagation encompasses various acoustic phenomena including reverberation. Current virtual acoustic methods, ranging from parametric filters to physically-accurate solvers, can simulate reverberation with varying degrees of fidelity. We investigate the effects of reverberant sounds generated using different propagation algorithms on acoustic distance perception, i.e., how faraway humans perceive a sound source. In particular, we evaluate two classes of methods for real-time sound propagation in dynamic scenes based on parametric filters and ray tracing. Our study shows that the more accurate method shows less distance compression as compared to the approximate, filter-based method. This suggests that accurate reverberation in VR results in a better reproduction of acoustic distances. We also quantify the levels of distance compression introduced by different propagation methods in a virtual environment.Comment: 8 Pages, 7 figure
    • 

    corecore