89 research outputs found

    Identification of a Widespread Palmitoylethanolamide Contamination in Standard Laboratory Glassware

    Get PDF
    Introduction: Fatty acid ethanolamides (FAEs) are a family of lipid mediators that participate in a host of biological functions. Procedures for the quantitative analysis of FAEs include organic solvent extraction from biological matrices (e.g., blood), followed by purification and subsequent quantitation by liquid chromatography-mass spectrometry (LC/MS) or gas chromatography-mass spectrometry. During the validation process of a new method for LC/MS analysis of FAEs in biological samples, we observed unusually high levels of the FAE, palmitoylethanolamide (PEA), in blank samples that did not contain any biological material. Materials and Methods: We investigated a possible source of this PEA artifact via liquid chromatography coupled to tandem mass spectrometry, as well as accurate mass analysis. Results: We found that high levels of a contaminant indistinguishable from PEA is present in new 5.75″ glass Pasteur pipettes, which are routinely used by laboratories to carry out lipid extractions. This artifact might account for discrepancies found in the literature regarding PEA levels in human blood serum and other tissues. Conclusions: It is recommended to take into account this pitfall by analyzing potential contamination of the disposable glassware during the validation process of any method used for analysis of FAEs

    Elevated stearoyl-CoA desaturase in brains of patients with Alzheimer\u27s disease

    Get PDF
    The molecular bases of Alzheimer\u27s disease (AD) remain unclear. We used a lipidomic approach to identify lipid abnormalities in the brains of subjects with AD (N = 37) compared to age-matched controls (N = 17). The analyses revealed statistically detectable elevations in levels of non-esterified monounsaturated fatty acids (MUFAs) and mead acid (20:3n-9) in mid-frontal cortex, temporal cortex and hippocampus of AD patients. Further studies showed that brain mRNAs encoding for isoforms of the rate-limiting enzyme in MUFAs biosynthesis, stearoyl-CoA desaturase (SCD-1, SCD-5a and SCD-5b), were elevated in subjects with AD. The monounsaturated/saturated fatty acid ratio (\u27desaturation index\u27)--displayed a strong negative correlation with measures of cognition: the Mini Mental State Examination test (r = -0.80; P = 0.0001) and the Boston Naming test (r = -0.57; P = 0.0071). Our results reveal a previously unrecognized role for the lipogenic enzyme SCD in AD

    Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome

    Get PDF
    Fragile X syndrome, the most commonly known genetic cause of autism, is due to loss of the fragile X mental retardation protein, which regulates signal transduction at metabotropic glutamate receptor-5 in the brain. Fragile X mental retardation protein deletion in mice enhances metabotropic glutamate receptor-5-dependent long-term depression in the hippocampus and cerebellum. Here we show that a distinct type of metabotropic glutamate receptor-5-dependent long-term depression at excitatory synapses of the ventral striatum and prefrontal cortex, which is mediated by the endocannabinoid 2-arachidonoyl-sn-glycerol, is absent in fragile X mental retardation protein-null mice. In these mutants, the macromolecular complex that links metabotropic glutamate receptor-5 to the 2-arachidonoyl-sn-glycerolproducing enzyme, diacylglycerol lipase-α (endocannabinoid signalosome), is disrupted and metabotropic glutamate receptor-5-dependent 2-arachidonoyl-sn-glycerol formation is compromised. These changes are accompanied by impaired endocannabinoid-dependent long-term depression. Pharmacological enhancement of 2-arachidonoyl-sn-glycerol signalling normalizes this synaptic defect and corrects behavioural abnormalities in fragile X mental retardation protein-deficient mice. The results identify the endocannabinoid signalosome as

    Elevated Stearoyl-CoA Desaturase in Brains of Patients with Alzheimer's Disease

    Get PDF
    The molecular bases of Alzheimer's disease (AD) remain unclear. We used a lipidomic approach to identify lipid abnormalities in the brains of subjects with AD (N = 37) compared to age-matched controls (N = 17). The analyses revealed statistically detectable elevations in levels of non-esterified monounsaturated fatty acids (MUFAs) and mead acid (20:3n-9) in mid-frontal cortex, temporal cortex and hippocampus of AD patients. Further studies showed that brain mRNAs encoding for isoforms of the rate-limiting enzyme in MUFAs biosynthesis, stearoyl-CoA desaturase (SCD-1, SCD-5a and SCD-5b), were elevated in subjects with AD. The monounsaturated/saturated fatty acid ratio (‘desaturation index’) – displayed a strong negative correlation with measures of cognition: the Mini Mental State Examination test (r = −0.80; P = 0.0001) and the Boston Naming test (r = −0.57; P = 0.0071). Our results reveal a previously unrecognized role for the lipogenic enzyme SCD in AD

    Is fat taste ready for primetime?

    No full text
    corecore