309 research outputs found

    Variability in the type and layer distribution of cortical A beta pathology in familial Alzheimer's disease

    Get PDF
    Familial Alzheimer's disease (FAD) is caused by autosomal dominant mutations in the PSEN1, PSEN2 or APP genes, giving rise to considerable clinical and pathological heterogeneity in FAD. Here we investigate variability in clinical data and the type and distribution of Aβ pathologies throughout the cortical layers of different FAD mutation cases. Brain tissue from 20 FAD cases [PSEN1 pre-codon 200 (n = 10), PSEN1 post-codon 200 (n = 6), APP (n = 4)] were investigated. Frontal cortex sections were stained immunohistochemically for Aβ, and Nissl to define the cortical layers. The frequency of different amyloid-beta plaque types was graded for each cortical layer and the severity of cerebral amyloid angiopathy (CAA) was determined in cortical and leptomeningeal blood vessels. Comparisons were made between FAD mutations and APOE4 status, with associations between pathology, clinical and genetic data investigated. In this cohort, possession of an APOE4 allele was associated with increased disease duration but not with age at onset, after adjusting for mutation sub-group and sex. We found Aβ pathology to be heterogeneous between cases although Aβ load was highest in cortical layer 3 for all mutation groups and a higher Aβ load was associated with APOE4. The PSEN1 post-codon 200 group had a higher Aβ load in lower cortical layers, with a small number of this group having increased cotton wool plaque pathology in lower layers. Cotton wool plaque frequency was positively associated with the severity of CAA in the whole cohort and in the PSEN1 post-codon 200 group. Carriers of the same PSEN1 mutation can have differing patterns of Aβ deposition, potentially because of differences in risk factors. Our results highlight possible influences of APOE4 genotype, and PSEN1 mutation type on Aβ deposition, which may have effects on the clinical heterogeneity of FAD

    Disease duration in autosomal dominant familial Alzheimer disease

    Get PDF
    OBJECTIVE: To use survival modeling to estimate disease duration in autosomal dominant familial Alzheimer disease (ADAD) and ascertain whether factors influencing age at onset also affect survival. METHODS: Symptomatic mutation carriers (201 presenilin 1 [PSEN1] and 55 amyloid precursor protein [APP]) from ADAD families referred to the Dementia Research Centre, between 1987 and 2019, were included. Survival was assessed with respect to age at onset, year of birth, APOE ε4 status, cognitive presentation, and sex using multilevel mixed-effects Weibull survival models. The contribution of mutation and family to variance in age at onset and duration was also assessed. RESULTS: Estimated mean survival was 11.6 (10.4–12.9) years and was similar for APP and PSEN1 mutations. Sixty-seven percent of the variance in age at onset was explained by mutation and 72% by mutation and family together. In contrast, only 6% of the variance in disease duration was explained by mutation specificity and 18% by family membership. Irrespective of gene, survival appeared longer for successive generations and in individuals with atypical presentations. Older age at onset was associated with longer duration within PSEN1 and shorter duration within APP mutation carriers. No differences in survival time were found between sexes or between mutations located before or beyond codon 200 within PSEN1. CONCLUSIONS: Survival is influenced by mutation to a much lesser extent than age at onset. Survival time has increased over time and is longer in atypical presentations. These insights may inform the interpretation of disease-modifying therapy trials in ADAD

    Visual short-term memory impairments in presymptomatic familial Alzheimer's disease: A longitudinal observational study

    Get PDF
    Visual short-term memory (VSTM) deficits including VSTM binding have been associated with Alzheimer's disease (AD) from preclinical to dementia stages, cross-sectionally. Yet, longitudinal investigations are lacking. The objective of this study was to evaluate VSTM function longitudinally and in relation to expected symptom onset in a cohort of familial Alzheimer's disease. Ninety-nine individuals (23 presymptomatic; 9 symptomatic and 67 controls) were included in an extension cross-sectional study and a sub-sample of 48 (23 presymptomatic carriers, 6 symptomatic and 19 controls), attending two to five visits with a median interval of 1.3 years, included in the longitudinal study. Participants completed the "What was where?" relational binding task (which measures memory for object identification, localisation and object-location binding under different conditions of memory load and delay), neuropsychology assessments and genetic testing. Compared to controls, presymptomatic carriers within 8.5 years of estimated symptom onset showed a faster rate of decline in localisation performance in long-delay conditions (4 seconds) and in traditional neuropsychology measures of verbal episodic memory. This study represents the first longitudinal VSTM investigation and shows that changes in memory resolution may be sensitive to tracking cognitive decline in preclinical AD at least as early as changes in the more traditional verbal episodic memory tasks

    Clinical phenotype and genetic associations in autosomal dominant familial Alzheimer's disease: a case series

    Get PDF
    Background - The causes of phenotypic heterogeneity in familial Alzheimer’s disease with autosomal dominant inheritance are not well understood. We aimed to characterise clinical phenotypes and genetic associations with APP and PSEN1 mutations in symptomatic autosomal dominant familial Alzheimer’s disease (ADAD). Methods - We retrospectively analysed genotypic and phenotypic data (age at symptom onset, initial cognitive or behavioural symptoms, and presence of myoclonus, seizures, pyramidal signs, extrapyramidal signs, and cerebellar signs) from all individuals with ADAD due to APP or PSEN1 mutations seen at the Dementia Research Centre in London, UK. We examined the frequency of presenting symptoms and additional neurological features, investigated associations with age at symptom onset, APOE genotype, and mutation position, and explored phenotypic differences between APP and PSEN1 mutation carriers. The proportion of individuals presenting with various symptoms was analysed with descriptive statistics, stratified by mutation type. Findings - Between July 1, 1987, and Oct 31, 2015, age at onset was recorded for 213 patients (168 with PSEN1 mutations and 45 with APP mutations), with detailed history and neurological examination findings available for 121 (85 with PSEN1 mutations and 36 with APP mutations). We identified 38 different PSEN1 mutations (four novel) and six APP mutations (one novel). Age at onset differed by mutation, with a younger onset for individuals with PSEN1 mutations than for those with APP mutations (mean age 43·6 years [SD 7·2] vs 50·4 years [SD 5·2], respectively, p<0·0001); within the PSEN1 group, 72% of age at onset variance was explained by the specific mutation. A cluster of five mutations with particularly early onset (mean age at onset <40 years) involving PSEN1’s first hydrophilic loop suggests critical functional importance of this region. 71 (84%) individuals with PSEN1 mutations and 35 (97%) with APP mutations presented with amnestic symptoms, making atypical cognitive presentations significantly more common in PSEN1 mutation carriers (n=14; p=0·037). Myoclonus and seizures were the most common additional neurological features; individuals with myoclonus (40 [47%] with PSEN1 mutations and 12 [33%] with APP mutations) were significantly more likely to develop seizures (p=0·001 for PSEN1; p=0·036 for APP), which affected around a quarter of the patients in each group (20 [24%] and nine [25%], respectively). A number of patients with PSEN1 mutations had pyramidal (21 [25%]), extrapyramidal (12 [14%]), or cerebellar (three [4%]) signs. Interpretation - ADAD phenotypes are heterogeneous, with both age at onset and clinical features being influenced by mutation position as well as causative gene. This highlights the importance of considering genetic testing in young patients with dementia and additional neurological features in order to appropriately diagnose and treat their symptoms, and of examining different mutation types separately in future research. Funding - Medical Research Council and National Institute for Health Research

    Motor features in posterior cortical atrophy and their imaging correlates

    Get PDF
    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease

    Complex Interactions between GSK3 and aPKC in Drosophila Embryonic Epithelial Morphogenesis

    Get PDF
    Generally, epithelial cells must organize in three dimensions to form functional tissue sheets. Here we investigate one such sheet, the Drosophila embryonic epidermis, and the morphogenetic processes organizing cells within it. We report that epidermal morphogenesis requires the proper distribution of the apical polarity determinant aPKC. Specifically, we find roles for the kinases GSK3 and aPKC in cellular alignment, asymmetric protein distribution, and adhesion during the development of this polarized tissue. Finally, we propose a model explaining how regulation of aPKC protein levels can reorganize both adhesion and the cytoskeleton

    Plasma amyloid-β ratios in autosomal dominant Alzheimer's disease: the influence of genotype.

    Get PDF
    In-vitro studies of autosomal dominant Alzheimer's disease implicate longer amyloid-beta peptides in disease pathogenesis, however less is known about the behaviour of these mutations in-vivo. In this cross-sectional cohort study, we used liquid chromatography-tandem mass spectrometry to analyse 66 plasma samples from individuals who were at-risk of inheriting a mutation or were symptomatic. We tested for differences in amyloid-beta42:38, 42:40 and 38:40 ratios between presenilin1 and amyloid precursor protein carriers. We examined the relationship between plasma and in-vitro models of amyloid-beta processing and tested for associations with parental age at onset. 39 participants were mutation carriers (28 presenilin1 and 11 amyloid precursor protein). Age- and sex-adjusted models showed marked differences in plasma amyloid-beta between genotypes: higher amyloid-beta42:38 in presenilin1 versus amyloid precursor protein (p < 0.001) and non-carriers (p < 0.001); higher amyloid-beta38:40 in amyloid precursor protein versus presenilin1 (p < 0.001) and non-carriers (p < 0.001); while amyloid-beta42:40 was higher in both mutation groups compared to non-carriers (both p < 0.001). Amyloid-beta profiles were reasonably consistent in plasma and cell lines. Within presenilin1, models demonstrated associations between amyloid-beta42:38, 42:40 and 38:40 ratios and parental age at onset. In-vivo differences in amyloid-beta processing between presenilin1 and amyloid precursor protein carriers provide insights into disease pathophysiology, which can inform therapy development

    Proteomic and protein interaction network analysis of human T lymphocytes during cell-cycle entry

    Get PDF
    Proteomic analysis of T cells emerging from quiescence identifies dynamic network-level changes in key cellular processes. Disruption of two such processes, ribosome biogenesis and RNA splicing, reveals that the programs controlling cell growth and cell-cycle entry are separable

    E2F and p53 Induce Apoptosis Independently during Drosophila Development but Intersect in the Context of DNA Damage

    Get PDF
    In mammalian cells, RB/E2F and p53 are intimately connected, and crosstalk between these pathways is critical for the induction of cell cycle arrest or cell death in response to cellular stresses. Here we have investigated the genetic interactions between RBF/E2F and p53 pathways during Drosophila development. Unexpectedly, we find that the pro-apoptotic activities of E2F and p53 are independent of one another when examined in the context of Drosophila development: apoptosis induced by the deregulation of dE2F1, or by the overexpression of dE2F1, is unaffected by the elimination of dp53; conversely, dp53-induced phenotypes are unaffected by the elimination of dE2F activity. However, dE2F and dp53 converge in the context of a DNA damage response. Both dE2F1/dDP and dp53 are required for DNA damage-induced cell death, and the analysis of rbf1 mutant eye discs indicates that dE2F1/dDP and dp53 cooperatively promote cell death in irradiated discs. In this context, the further deregulation in the expression of pro-apoptotic genes generates an additional sensitivity to apoptosis that requires both dE2F/dDP and dp53 activity. This sensitivity differs from DNA damage-induced apoptosis in wild-type discs (and from dE2F/dDP-induced apoptosis in un-irradiated rbf1 mutant eye discs) by being dependent on both hid and reaper. These results show that pro-apoptotic activities of dE2F1 and dp53 are surprisingly separable: dp53 is required for dE2F-dependent apoptosis in the response to DNA damage, but it is not required for dE2F-dependent apoptosis caused simply by the inactivation of rbf1

    Morphological and Geochemical Evidence of Eumelanin Preservation in the Feathers of the Early Cretaceous Bird, Gansus yumenensis

    Get PDF
    Recent studies have shown evidence for the preservation of colour in fossilized soft tissues by imaging melanosomes, melanin pigment containing organelles. This study combines geochemical analyses with morphological observations to investigate the preservation of melanosomes and melanin within feathers of the Early Cretaceous bird, Gansus yumenensis. Scanning electron microscopy reveals structures concordant with those previously identified as eumelanosomes within visually dark areas of the feathers but not in lighter areas or sedimentary matrices. Fourier transform infrared analyses show different spectra for the feathers and their matrices; melanic functional groups appear in the feather including carboxylic acid and ketone groups that are not seen in the matrix. When mapped, the carboxylic acid group absorption faithfully replicates the visually dark areas of the feathers. Electron Paramagnetic Resonance spectroscopy of one specimen demonstrates the presence of organic signals but proved too insensitive to resolve melanin. Pyrolysis gas chromatography mass spectrometry shows a similar distribution of aliphatic material within both feathers that are different from those of their respective matrices. In combination, these techniques strongly suggest that not only do the feathers contain endogenous organic material, but that both geochemical and morphological evidence supports the preservation of original eumelanic pigment residue
    corecore