8 research outputs found
Fetal Medial Habenula Transplants: Innervation of the Rat Interpeduncular Nucleus
The effects of donor age and site of placement on the survival of fetal medial habenula (MH) transplants into adult rats hosts were examined. The innervation of the interpeduncular nucleus (IPN) in such cases was also examined. Explants of MH consisting of the medial-dorsal lip of the third ventricle were held in vitro for 1—2 days. Colloidal gold conjugated to wheat germ agglutinin was added for the last 18 hours to label the cells. Four of 16 cases with E19 derived transplants contained donor neurons. Markedly larger transplants were present in 95% of 20 cases with E16 derived transplants. Sites in the ventral midbrain were successful, while limited or no survival occurred at sites more remote from IPN. Retrograde labeling of transplant neurons was present in each case studied with HRP injection into host IPN. Colloidal gold-labeled macrophages, some oriented capillaries and GFAP-positive processes marked the donor-host interface. In EM the interface was evident only by the difference in tissue elements in the transplant versus host. Numerous synapses of Gray types I and II were present in the transplant. Excellent survival of MH neurons, donor/host interfaces, innervation of IPN by the transplant and fine structure in and around the transplants, all suggest that such preparations are suitable for further experimental analysis of the habenulo-interpeduncular system
Practical nutritional recovery strategies for elite soccer players when limited time separates repeated matches
Specific guidelines that aim to facilitate the recovery of soccer players from the demands of training and a congested fixture schedule are lacking; especially in relation to evidence-based nutritional recommendations. The importance of repeated high level performance and injury avoidance while addressing the challenges of fixture scheduling, travel to away venues, and training commitments requires a strategic and practically feasible method of implementing specific nutritional strategies. Here we present evidence-based guidelines regarding nutritional recovery strategies within the context of soccer. An emphasis is placed on providing practically applicable guidelines for facilitation of recovery when multiple matches are played within a short period of time (i.e. 48 h). Following match-play, the restoration of liver and muscle glycogen stores (via consumption of ~1.2 gkg-1h-1 of carbohydrate) and augmentation of protein synthesis (via ~40 g of protein) should be prioritised in the first 20 minutes of recovery. Daily intakes of 6-10 gkg-1 body mass of carbohydrate are recommended when limited time separates repeated matches while daily protein intakes of >1.5 gkg-1 body mass should be targeted; possibly in the form of multiple smaller feedings (e.g., 6 x 20-40 g). At least 150% of the body mass lost during exercise should be consumed within 1 h and electrolytes added such that fluid losses are ameliorated. Strategic use of protein, leucine, creatine, polyphenols and omega-3 supplements could also offer practical means of enhancing post-match recovery.
Keywords: soccer, nutrition, recovery, polyphenols, omega-3, creatine, fixture, congestio
TrkA expression in the CNS: evidence for the existence of several novel NGF-responsive CNS neurons
NGF acts as a neurotrophic factor by binding and activating its receptor on certain neuronal populations in the CNS and PNS. TrkA is a receptor for NGF. Recent findings in vitro indicate that this NGF-activated receptor tyrosine kinase transduces the NGF signal. To further define NGF actions in the CNS, we examined trkA expression in the adult rat brain. We found that trkA mRNA and immunoreactivity (IR) coincided in specific, defined neuronal populations in the forebrain and brainstem. In addition to cholinergic neurons in the basal forebrain and neostriatum, trkA expression was found in noncholinergic neurons in (1) the paraventricular anterior and reunions thalamic nuclei, (2) the rostral and intermediate subnuclei of the interpeduncular nucleus (IPN), (3) scattered neurons in the ventrolateral and paramedian medulla, (4) the prepositus hypoglossal nucleus, and (5) the area postrema. NGF responsiveness was demonstrated for each of these populations. In contrast to trkA, p75(NGFR) was found only in a minority of NGF-responsive populations. Our data provide further evidence that expression of trkA marks NGF-responsive CNS neurons and suggests novel roles for NGF in the brain
Recovery in Soccer
International audienceIn the formerly published part I of this two-part review, we examined fatigue after soccer matchplay and recovery kinetics of physical performance, and cognitive, subjective and biological markers. To reduce the magnitude of fatigue and to accelerate the time to fully recover after completion, several recovery strategies are now used in professional soccer teams. During congested fixture schedules, recovery strategies are highly required to alleviate post-match fatigue, and then to regain performance faster and reduce the risk of injury. Fatigue following competition is multifactorial and mainly related to dehydration , glycogen depletion, muscle damage and mental fatigue. Recovery strategies should consequently be targeted against the major causes of fatigue. Strategies reviewed in part II of this article were nutritional intake, cold water immersion, sleeping, active recovery, stretching , compression garments, massage and electrical stimulation. Some strategies such as hydration, diet and sleep are effective in their ability to counteract the fatigue mechanisms. Providing milk drinks to players at the end of competition and a meal containing high-glycaemic index carbohydrate and protein within the hour following the match are effective in replenishing substrate stores and optimizing muscle-damage repair. Sleep is an essential part of recovery management. Sleep disturbance after a match is common and can negatively impact on the recovery process. Cold water immersion is effective during acute periods of match congestion in order to regain performance levels faster and repress the acute inflammatory process. Scientific evidence for other strategies reviewed in their ability to accelerate the return to the initial level of performance is still lacking. These include active recovery, stretching, compression garments, massage and electrical stimulation. While this does not mean that these strategies do not aid the recovery process, the protocols implemented up until now do not significantly accelerate the return to initial levels of performance in comparison with a control condition. In conclusion, scientific evidence to support the use of strategies commonly used during recovery is lacking. Additional research is required in this area in order to help practitioners establish an efficient recovery protocol immediately after matchplay, but also for the following days. Future studies could focus on the chronic effects of recovery strategies, on combinations of recovery protocols and on the effects of recovery strategies inducing an anti-inflammatory or a pro-inflammatory response