44 research outputs found

    \u3csup\u3e1\u3c/sup\u3eH, \u3csup\u3e15\u3c/sup\u3eN, and \u3csup\u3e13\u3c/sup\u3eC Chemical Shift Assignments of the Regulatory Domain of Human Calcineurin

    Get PDF
    Calcineurin (CaN) plays an important role in T-cell activation, cardiac system development and nervous system function. Previous studies have demonstrated that the regulatory domain (RD) of CaN binds calmodulin (CaM) towards the N-terminal end. Calcium-loaded CaM activates the serine/threonine phosphatase activity of CaN by binding to the RD, although the mechanistic details of this interaction remain unclear. It is thought that CaM binding at the RD displaces the auto-inhibitory domain (AID) from the active site of CaN, activating phosphatase activity. In the absence of calcium-loaded CaM, the RD is disordered, and binding of CaM induces folding in the RD. In order to provide mechanistic detail about the CaM–CaN interaction, we have undertaken an NMR study of the RD of CaN. Complete 13C, 15N and 1H assignments of the RD of CaN were obtained using solution NMR spectroscopy. The backbone of RD has been assigned using a combination of 13C-detected CON-IPAP experiments as well as traditional HNCO, HNCA, HNCOCA and HNCACB-based 3D NMR spectroscopy. A 15N-resolved TOCSY experiment has been used to assign Hα and Hβ chemical shifts

    Surface Plasmon Resonance, Formation Mechanism, and Surface Enhanced Raman Spectroscopy of Ag+-Stained Gold Nanoparticles

    Get PDF
    A series of recent works have demonstrated the spontaneous Ag+ adsorption onto gold surfaces. However, a mechanistic understanding of the Ag+ interactions with gold has been controversial. Reported herein is a systematic study of the Ag+ binding to AuNPs using several in-situ and ex-situ measurement techniques. The time-resolved UV-vis measurements of the AuNP surface plasmonic resonance revealed that the silver adsorption proceeds through two parallel pseudo-first order processes with a time constant of 16(±2) and 1,000(±35) s, respectively. About 95% of the Ag+ adsorption proceeds through the fast adsorption process. The in-situ zeta potential data indicated that this fast Ag+ adsorption is driven primarily by the long-range electrostatic forces that lead to AuNP charge neutralization, while the time-dependent pH data shows that the slow Ag+ binding process involves proton-releasing reactions that must be driven by near-range interactions. These experimental data, together with the ex-situ XPS measurement indicates that adsorbed silver remains cationic, but not as a charged-neutral silver atom proposed by the anti-galvanic reaction mechanism. The surface-enhanced Raman activities of the Ag+-stained AuNPs are slightly higher than that for AuNPs, but significantly lower than that for the silver nanoparticles (AgNPs). The SERS feature of the ligands on the Ag+-stained AuNPs can differ from that on both AuNPs and AgNPs. Besides the new insights to formation mechanism, properties, and applications of the Ag+-stained AuNPs, the experimental methodology presented in this work can also be important for studying nanoparticle interfacial interactions

    Feasibility of Manufacturing Strand-Based Wood Composite Treated with β-Cyclodextrin–Boric Acid for Fungal Decay Resistance

    No full text
    The feasibility of using β-cyclodextrin (βCD) as an eco-friendly carrier of boric acid for the protection of strand-based wood composites against decay fungi was evaluated. The formation of a βCD–boric acid (βCD–B) complex was confirmed by the appearance of the boron–oxygen bond by using attenuated total reflection–Fourier transform infrared spectroscopy. Chemical shifts of around 6.25 and 1.41 ppm were also observed in 1H Nuclear Magnetic Resonance (NMR) and 11B NMR spectra, respectively. The βCD–B preservatives at two levels (5 and 10 wt.%) were uniformly blended with southern pine strands that were subsequently sprayed with polymeric methylene diphenyl diisocyanate (pMDI) resin. The blended strands were formed into a loose mat by hand and consolidated into 25 × 254 × 12 mm oriented strand boards (OSB) using a hot-press. The OSB panels were cut to end-matched internal bonding (IB) strength and fungal decay resistance test specimens. The vertical density profiles (VDPs) of the IB specimens were measured using an X-ray based density profiler and the specimens with statistically similar VDPs were selected for the IB and decay tests. The IB strength of the treated specimens was lower than the control specimens but they were above the required IB strength of heavy-duty load-bearing boards for use in humid conditions, specified in the BS EN 300:2006 standard. The reduced IB of preservative-treated OSB boards could be explained by the destabilized resin upon the addition of the βCD–B complex, as indicated by the differential scanning calorimetry (DSC) results. The resistance of the OSB panels against two brown-rot fungi (i.e., G. trabeum or P. placenta) was evaluated before and after accelerated leaching cycles. The treated OSBs exposed to the fungi showed an average mass loss of lower than 3% before leaching, while the untreated OSBs had 49 and 35% mass losses due to decay by G. trabeum or P. placenta, respectively. However, upon the leaching, the treatment provided protection only against G. trabeum to a certain degree (average mass loss of 15%). The experimental results suggest that protection efficacy against decay fungi after leaching, as well as the adhesion of the OSB strands, can be improved by increasing the amount of pMDI resin

    Understanding the Adsorption of Peptides and Proteins onto PEGylated Gold Nanoparticles

    No full text
    Polyethylene glycol (PEG) surface conjugations are widely employed to render passivating properties to nanoparticles in biological applications. The benefits of surface passivation by PEG are reduced protein adsorption, diminished non-specific interactions, and improvement in pharmacokinetics. However, the limitations of PEG passivation remain an active area of research, and recent examples from the literature demonstrate how PEG passivation can fail. Here, we study the adsorption amount of biomolecules to PEGylated gold nanoparticles (AuNPs), focusing on how different protein properties influence binding. The AuNPs are PEGylated with three different sizes of conjugated PEG chains, and we examine interactions with proteins of different sizes, charges, and surface cysteine content. The experiments are carried out in vitro at physiologically relevant timescales to obtain the adsorption amounts and rates of each biomolecule on AuNP-PEGs of varying compositions. Our findings are relevant in understanding how protein size and the surface cysteine content affect binding, and our work reveals that cysteine residues can dramatically increase adsorption rates on PEGylated AuNPs. Moreover, shorter chain PEG molecules passivate the AuNP surface more effectively against all protein types
    corecore