2 research outputs found

    Sliced Cramer synaptic consolidation for preserving deeply learned representations

    Get PDF
    Deep neural networks suffer from the inability to preserve the learned data representation (i.e., catastrophic forgetting) in domains where the input data distribution is non-stationary, and it changes during training. Various selective synaptic plasticity approaches have been recently proposed to preserve network parameters, which are crucial for previously learned tasks while learning new tasks. We explore such selective synaptic plasticity approaches through a unifying lens of memory replay and show the close relationship between methods like Elastic Weight Consolidation (EWC) and Memory-Aware-Synapses (MAS). We then propose a fundamentally different class of preservation methods that aim at preserving the distribution of the network’s output at an arbitrary layer for previous tasks while learning a new one. We propose the sliced Cramer distance as a suitable ´ choice for such preservation and evaluate our Sliced Cramer Preservation (SCP) ´ algorithm through extensive empirical investigations on various network architectures in both supervised and unsupervised learning settings. We show that SCP consistently utilizes the learning capacity of the network better than online-EWC and MAS methods on various incremental learning tasks

    Context meta-reinforcement learning via neuromodulation

    No full text
    Meta-reinforcement learning (meta-RL) algorithms enable agents to adapt quickly to tasks from few samples in dynamic environments. Such a feat is achieved through dynamic representations in an agent’s policy network (obtained via reasoning about task context, model parameter updates, or both). However, obtaining rich dynamic representations for fast adaptation beyond simple benchmark problems is challenging due to the burden placed on the policy network to accommodate different policies. This paper addresses the challenge by introducing neuromodulation as a modular component to augment a standard policy network that regulates neuronal activities in order to produce efficient dynamic representations for task adaptation. The proposed extension to the policy network is evaluated across multiple discrete and continuous control environments of increasing complexity. To prove the generality and benefits of the extension in meta-RL, the neuromodulated network was applied to two state-of-the-art meta-RL algorithms (CAVIA and PEARL). The result demonstrates that meta-RL augmented with neuromodulation produces significantly better result and richer dynamic representations in comparison to the baselines.</p
    corecore