5 research outputs found

    Potential and Alternative Bioactive Compounds from Brown Agaricus bisporus Mushroom Extracts for Xerosis Treatment

    No full text
    This study aimed to investigate the ability of brown Agaricus bisporus extracts to enhance xerosis treatment via their biological activities, including their antioxidant, anti-aging, and anti-inflammation. Brown A. bisporus ethanol extract (EE) and brown A. bisporus water extract (WE) contained ergothioneine and gallic acid as their major compounds, as detected by HPLC, respectively. The WE exhibited the highest total polysaccharide content (734.04 ± 0.03 mg glucose/g extract) and total phenolic content (190.90 ± 0.07 mg gallic acid/g extract). The WE exhibited an inhibitory effect of 83.34 ± 18.66% on a collagenase enzyme, whereas the EE inhibited the elastase enzymes by 81.26 ± 4.37%. In addition, the EE also demonstrated strong activities against DPPH, with an IC50 0.30 ± 0.04 mg/mL, ABTS with a TEAC value of 8.06 ± 0.08 µM Trolox/g extract, and a FRAP assay with a FRAP value of 390.50 ± 0.32 mM FeSO4/g. In addition, all extracts were non-cytotoxic and could decrease the secretion of IL-6 and TNF-α in HaCaT cells. Therefore, brown A. bisporus extracts might be a potential natural raw material that can be further used in cosmeceutical products for xerosis treatment due to their good efficacy

    Potential and Alternative Bioactive Compounds from Brown <i>Agaricus bisporus</i> Mushroom Extracts for Xerosis Treatment

    No full text
    This study aimed to investigate the ability of brown Agaricus bisporus extracts to enhance xerosis treatment via their biological activities, including their antioxidant, anti-aging, and anti-inflammation. Brown A. bisporus ethanol extract (EE) and brown A. bisporus water extract (WE) contained ergothioneine and gallic acid as their major compounds, as detected by HPLC, respectively. The WE exhibited the highest total polysaccharide content (734.04 ± 0.03 mg glucose/g extract) and total phenolic content (190.90 ± 0.07 mg gallic acid/g extract). The WE exhibited an inhibitory effect of 83.34 ± 18.66% on a collagenase enzyme, whereas the EE inhibited the elastase enzymes by 81.26 ± 4.37%. In addition, the EE also demonstrated strong activities against DPPH, with an IC50 0.30 ± 0.04 mg/mL, ABTS with a TEAC value of 8.06 ± 0.08 µM Trolox/g extract, and a FRAP assay with a FRAP value of 390.50 ± 0.32 mM FeSO4/g. In addition, all extracts were non-cytotoxic and could decrease the secretion of IL-6 and TNF-α in HaCaT cells. Therefore, brown A. bisporus extracts might be a potential natural raw material that can be further used in cosmeceutical products for xerosis treatment due to their good efficacy

    Phytochemical Analysis and Antioxidant, Antimicrobial, and Antiaging Activities of Ethanolic Seed Extracts of Four Mucuna Species

    No full text
    The investigation into promising botanical materials for natural cosmetics is expanding due to environmental and health awareness. Here, we aimed to evaluate the phytochemical substances and the potential skin-related pharmacological activities of four Mucuna seeds, namely M. gigantea (Willd.) DC. (MGG), M. interrupta Gagnep. (MIT), M. monosperma Wight (MMM), and M. pruriens (L.) DC. (MPR), belonging to the Fabaceae family. In methodology, the Mucuna seeds were authenticated using morphological and molecular approaches. L-DOPA, phenolics, and flavonoid content, incorporated with HPLC and GC&ndash;MS fingerprinting analyses, were determined. Then, skin-related antimicrobial, antioxidant, and antiaging activities were determined. The results revealed that MPR showed the highest L-DOPA content (75.94 mg/100 mg extract), whereas MGG exhibited the highest phenolic and flavonoid content (56.73 &plusmn; 0.62 mg gallic/g extract and 1030.11 &plusmn; 3.97 mg quercetin/g extract, respectively). Only MMM and MPR could inhibit all of S. aureus, S. epidermidis, and C. albicans, but no sample could inhibit C. acnes. Furthermore, all samples demonstrated antioxidant activity. Interestingly, all Mucuna samples exhibited strong collagenase, elastase, and hyaluronidase inhibitory activities. We conclude that the ethanolic extracts of four Mucuna seeds are probably advantageous in the development of skincare cosmeceutical products

    Phytochemical Analysis and Antioxidant, Antimicrobial, and Antiaging Activities of Ethanolic Seed Extracts of Four <i>Mucuna</i> Species

    No full text
    The investigation into promising botanical materials for natural cosmetics is expanding due to environmental and health awareness. Here, we aimed to evaluate the phytochemical substances and the potential skin-related pharmacological activities of four Mucuna seeds, namely M. gigantea (Willd.) DC. (MGG), M. interrupta Gagnep. (MIT), M. monosperma Wight (MMM), and M. pruriens (L.) DC. (MPR), belonging to the Fabaceae family. In methodology, the Mucuna seeds were authenticated using morphological and molecular approaches. L-DOPA, phenolics, and flavonoid content, incorporated with HPLC and GC–MS fingerprinting analyses, were determined. Then, skin-related antimicrobial, antioxidant, and antiaging activities were determined. The results revealed that MPR showed the highest L-DOPA content (75.94 mg/100 mg extract), whereas MGG exhibited the highest phenolic and flavonoid content (56.73 ± 0.62 mg gallic/g extract and 1030.11 ± 3.97 mg quercetin/g extract, respectively). Only MMM and MPR could inhibit all of S. aureus, S. epidermidis, and C. albicans, but no sample could inhibit C. acnes. Furthermore, all samples demonstrated antioxidant activity. Interestingly, all Mucuna samples exhibited strong collagenase, elastase, and hyaluronidase inhibitory activities. We conclude that the ethanolic extracts of four Mucuna seeds are probably advantageous in the development of skincare cosmeceutical products

    Improvement of Stability and Transdermal Delivery of Bioactive Compounds in Green Robusta Coffee Beans Extract Loaded Nanostructured Lipid Carriers

    No full text
    The aim of this study was to develop green robusta coffee beans extract loaded nanostructured lipid carriers (NLCs) for enhancing dermal application and its efficiency. The green robusta coffee beans extract cultivated in Chumphon (CP) exhibited the highest antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay with IC50 of 34.1 ± 0.9 µg/ml, lipid peroxidation inhibition with percentage inhibition of 38.8 ± 1.7, and ferric reducing antioxidant power (FRAP) assay with a FRAP value of 234.5 ± 12.3 mM FeSO4/g. The extract contained caffeine, chlorogenic acid, and caffeic acid as major compounds. The anti-inflammatory test indicated that CP could decrease the secretion of IL-6 in macrophage cells and caused no irritation to blood vessels on the irritation test by hen’s egg test chorioallantoic membrane (HET-CAM) assay. The particle size of CP-loaded NLCs was 158.1 ± 0.2 nm with a narrow polydispersity index and showed no noticeable difference after the stability test. Entrapment efficacy of CP-loaded NLCs was found to be over 60%. Caffeine and chlorogenic acid in CP-loaded NLCs were released sustainably and penetrated deeper into the skin than the extract in a conventional emulsion. In conclusion, the CP-loaded NLCs can be further used in cosmetics for dermal applications due to good efficacy and safety
    corecore