3 research outputs found

    Immunostimulants in respiratory diseases: focus on Pidotimod

    Get PDF
    Usefulness of Pidotimod and its role as immunostimulant, has been discussed, we know, for several decades. Nevertheless, there is still much to know. Understanding its mechanisms and its potential usefulness in airway infections and its prevention, asthma both Th2 and non Th2 type, bronchiectasis, as adjuvant in vaccination and in allergen immunotherapy still remains to clearly unveil. The aim of this paper was to provide a useful updated review of the role of the main available immunostimulants, giving particular focus on Pidotimod use and its potentials utility in respiratory diseases. Pidotimod showed its usefulness in reducing need for antibiotics in airway infections, increasing the level of immunoglobulins (IgA, IgM, IgG) and T-lymphocyte subsets (CD3+, CD4+) endowed with immunomodulatory activity that affect both innate and adaptive immune responses. Higher expression of TLR2 and of HLA-DR molecules, induction of dendritic cell maturation and release of pro-inflammatory molecules, stimulation of T lymphocyte proliferation and differentiation toward a Th1 phenotype, as well as an increase of the phagocytosis have been demonstrated to be associated with Pidotimod in in vitro studies. All these activities are potentially useful for several respiratory conditions such as asthma, COPD, and recurrent respiratory tract infections

    Chemistry, pharmacology, and cellular uptake mechanisms of thiometallate sulfide donors

    Get PDF
    BACKGROUND AND PURPOSE: A clinical need exists for targeted, safe, and effective sulfide donors. We recently reported that ammonium tetrathiomolybdate (ATTM) belongs to a new class of sulfide-releasing drugs. Here, we investigated the cellular uptake mechanisms of this drug class compared to sodium hydrosulfide (NaHS) and the effects of a thiometallate tungsten congener of ATTM, ammonium tetrathiotungstate (ATTT). EXPERIMENTAL APPROACH: In vitro H2 S release was determined by headspace gas sampling of vials containing dissolved thiometallates. Thiometallate and NaHS bioactivity was assessed by spectrophotometry-derived sulfhaemoglobin formation. Cellular uptake dependence on the anion exchange protein (AE)-1 was investigated in human red blood cells. ATTM/glutathione interactions were assessed by LC-MS/MS. Rodent pharmacokinetic and pharmacodynamic studies focused on haemodynamics and inhibition of aerobic respiration. KEY RESULTS: ATTM and ATTT both exhibit temperature-, pH-, and thiol-dependence of sulfide release. ATTM/glutathione interactions revealed the generation of inorganic and organic persulfides and polysulfides. ATTM showed greater ex vivo and in vivo bioactivity over ATTT, notwithstanding similar pharmacokinetic profiles. Cellular uptake mechanisms of the two drug classes are distinct; thiometallates show dependence on AE-1, while hydrosulfide itself was unaffected by inhibition of this pathway. CONCLUSIONS AND IMPLICATIONS: The cellular uptake of thiometallates relies upon a plasma membrane ion channel. This advances our pharmacological knowledge of this drug class, and further supports their utility as cell-targeted sulfide donor therapies. Our results indicate that, as a more stable form, ATTT is better suited as a copper chelator. ATTM, a superior sulfide donor, may additionally participate in intracellular redox recycling

    Chemistry, pharmacology and cellular uptake mechanisms of thiometallate sulfide donors

    No full text
    BACKGROUND AND PURPOSE: A clinical need exists for targeted, safe and effective sulfide donors. We recently reported that ammonium tetrathiomolybdate (ATTM) belongs to a new class of sulfide-releasing drugs. Here, we investigate cellular uptake mechanisms of this drug class compared to sodium hydrosulfide (NaHS), and report on the thiometallate tungsten congener of ATTM, ammonium tetrathiotungstate (ATTT).EXPERIMENTAL APPROACH: In vitro H2 S release was determined by head-space gas sampling of vials containing dissolved thiometallates. Thiometallate and NaHS bioactivity was assessed by spectrophotometry-derived sulfhaemoglobin formation. Cellular uptake dependence on the anion exchanger (AE)-1 was investigated in human red blood cells. ATTM/glutathione interactions were assessed by LC-MS/MS. Rodent pharmacokinetic and pharmacodynamic studies focussed on haemodynamics and inhibition of aerobic respiration.KEY RESULTS: ATTM and ATTT both exhibit temperature-, pH-, and thiol-dependence of sulfide release. ATTM/glutathione interactions revealed the generation of inorganic and organic persulfides and polysulfides. ATTM showed greater ex vivo and in vivo bioactivity over ATTT, notwithstanding similar pharmacokinetic profiles. Cellular uptake mechanisms of the two drug classes are distinct; thiometallates show dependence on the AE-1 channel, while hydrosulfide itself was unaffected by inhibition of this pathway.CONCLUSION AND IMPLICATIONS: Our demonstration that cellular uptake of thiometallates relies upon a plasma membrane ion channel advances our pharmacological knowledge of this drug class. It further supports their utility as cell-targeted sulfide donor therapies. Our results indicate that, as a more stable form, ATTT is better suited as a copper chelator. ATTM, a superior sulfide donor, may additionally participate in intracellular redox recycling.</p
    corecore