2 research outputs found

    Indoor Hibernation of <em>Helix aspersa</em> Juveniles

    Get PDF
    The “Italian” outdoor snailfarming technology assumes that both mature and juvenile snails hibernate outdoor, protected by a thin sheet of unweaved coverlet (agryl sheet). In contrast, the “French” snailfarming technology implies that only mature brown garden snails (Helix aspersa) hibernate indoor, in strictly controlled microenvironmental parameters (temperature, humidity, and ventilation). This technology may also be viable for H. aspersa juveniles. Extremely high death rates occurring in Romanian outdoor snailfarms during colder winters (>80%) imposed the need to find alternative paths for a proper hibernation of H. aspersa. Using statistical analyses, close surveillance of technological flow, and controlled microenvironmental parameters, we assessed the possibility to adapt indoor hibernation for H. aspersa juveniles. The experiments lasted for 2 years (2006–2008) and were carried out on 34,000 H. aspersa juveniles and 15,000 mature ones, using different technological flows and microenvironmental parameters (temperature, humidity, and ventilation). They were performed in two stages and involved five case studies, conducted independently in three different locations: Floreşti (Mehedinţi county), Sântuhalm (Hunedoara county), and Muntenii de Sus (Vaslui county). The first stage tested the hypothesis in relation to survival rate of mature snails, H. aspersa, in the same conditions, whereas the second stage improved the technological flow, before its extensive application. We demonstrated that noncontrolled microclimate parameters (temperature, humidity, and ventilation) and the use of straw as hibernation support induced significant differences (P < 0.01) concerning death levels of H. aspersa juveniles as compared to their indoor hibernation in semicontrolled microclimate (temperature and ventilation). In the same hibernation microclimate, mature snails exhibited higher survival levels than the juvenile ones, irrespective of technological flow and origin (P < 0.0001). We also demonstrated that juveniles’ weight loss displays a relatively constant variation (16.33–20.51%). In addition, the correlations between the individual average weight before and after hibernation were described by the same logarithmic regression. Furthermore, significantly higher survival rates of H. aspersa juveniles (P < 0.0001) have been registered when they had not been awakened during hibernation. Finally, we proved that indoor hibernation of H. aspersa juveniles in strictly controlled microenvironmental parameters (temperature, humidity, and ventilation) could represent a viable technology that improves the technological flow in outdoor snailfarming during wintertime in colder climates

    Research and Science Today No. 1(17)/2019

    No full text
    RESEARCH AND SCIENCE TODAY is a biannual science journal established in 2011. The journal is an informational platform that publishes assessment articles and the results of various scientific research carried out by academics. We provide the authors with the opportunity to create and/or perfect their science writing skills. Thus, each issue of the journal (two per year and at least two supplements) will contain professional articles from any academic field, authored by domestic and international academics. The goal of this journal is to pass on relevant information to undergraduate, graduate, and post-graduate students as well as to fellow academics and researchers; the topics covered are unlimited, considering its multi-disciplinary profile. Regarding the national and international visibility of Research and Science Today, it is indexed in over 30 international databases (IDB) and is present in over 200 online libraries and catalogues; therefore, anybody can easily consult the articles featured in each issue by accessing the databases or simply the website
    corecore