6 research outputs found

    Fuel consumption and emissions performance under real driving: Comparison between hybrid and conventional vehicles.

    No full text
    Hybrid electric vehicles (HEVs) are perceived to be more energy efficient and less polluting than conventional internal combustion engine (ICE) vehicles. However, increasing evidence has shown that real-driving emissions (RDE) could be much higher than laboratory type approval limits and the advantages of HEVs over their conventional ICE counterparts under real-driving conditions have not been studied extensively. Therefore, this study was conducted to evaluate the real-driving fuel consumption and pollutant emissions performance of HEVs against their conventional ICE counterparts. Two pairs of hybrid and conventional gasoline vehicles of the same model were tested simultaneously in a novel convoy mode using two portable emission measurement systems (PEMSs), thus eliminating the effect of vehicle configurations, driving behaviour, road conditions and ambient environment on the performance comparison. The results showed that although real-driving fuel consumption for both hybrid and conventional vehicles were 44%–100% and 30%–82% higher than their laboratory results respectively, HEVs saved 23%–49% fuel relative to their conventional ICE counterparts. Pollutant emissions of all the tested vehicles were lower than the regulation limits. However, HEVs showed no reduction in HC emissions and consistently higher CO emissions compared to the conventional ICE vehicles. This could be caused by the frequent stops and restarts of the HEV engines, as well as the lowered exhaust gas temperature and reduced effectiveness of the oxidation catalyst. The findings therefore show that while achieving the fuel reduction target, hybridisation did not bring the expected benefits to urban air quality

    Characterisation of diesel vehicle emissions and determination of remote sensing cutpoints for diesel high-emitters.

    No full text
    Diesel vehicles are a major source of air pollutants in cities and have caused significant health risks to the public globally. This study used both on-road remote sensing and transient chassis dynamometer to characterise emissions of diesel light goods vehicles. A large sample size of 183 diesel vans were tested on a transient chassis dynamometer to evaluate the emission levels of in-service diesel vehicles and to determine a set of remote sensing cutpoints for diesel high-emitters. The results showed that 79% and 19% of the Euro 4 and Euro 5 diesel vehicles failed the transient cycle test, respectively. Most of the high-emitters failed the NO limits, while no vehicle failed the HC limits and only a few vehicles failed the CO limits. Vehicles that failed NO limits occurred in both old and new vehicles. NO/CO2 ratios of 57.30 and 22.85 ppm/% were chosen as the remote sensing cutpoints for Euro 4 and Euro 5 high-emitters, respectively. The cutpoints could capture a Euro 4 and Euro 5 high-emitter at a probability of 27% and 57% with one snapshot remote sensing measurement, while only producing 1% of false high-emitter detections. The probability of high-emitting events was generally evenly distributed over the test cycle, indicating that no particular driving condition produced a higher probability of high-emitting events. Analysis on the effect of cutpoints on real-driving diesel fleet was carried out using a three-year remote sensing program. Results showed that 36% of Euro 4 and 47% of Euro 5 remote sensing measurements would be detected as high-emitting using the proposed cutpoints

    Re-evaluating effectiveness of vehicle emission control programmes targeting high-emitters

    No full text
    © 2020, The Author(s), under exclusive licence to Springer Nature Limited. Estimating emission distribution within a vehicle fleet is critical for air pollution control. Previous studies reported that more than half of total fleet emissions were produced by only the highest 10% emitters, making repairing or deregistering a small percentage of high-emitters the most cost-effective measure to control vehicle emissions. With diesel emissions data from chassis dynamometer testing and on-road remote sensing, we show that such a strategy may be oversimplified

    Impact of drivers on real-driving fuel consumption and emissions performance

    No full text
    Eco-driving has attracted great attention as a cost-effective and immediate measure to reduce fuel consumption significantly. Understanding the impact of driver behaviour on real driving emissions (RDE) is of great importance for developing effective eco-driving devices and training programs. Therefore, this study was conducted to investigate the performance of different drivers using a portable emission measurement system. In total, 30 drivers, including 15 novice and 15 experienced drivers, were recruited to drive the same diesel vehicle on the same route, to minimise the effect of uncontrollable real-world factors on the performance evaluation. The results show that novice drivers are less skilled or more aggressive than experienced drivers in using the accelerator pedal, leading to higher vehicle and engine speeds. As a result, fuel consumption rates of novice drivers vary in a slightly greater range than those of experienced drivers, with a marginally higher (2%) mean fuel consumption. Regarding pollutant emissions, CO and THC emissions of all drivers are well below the standard limits, while NOx and PM emissions of some drivers significantly exceed the limits. Compared with experienced drivers, novice drivers produce 17% and 29% higher mean NOx and PM emissions, respectively. Overall, the experimental results reject the hypothesis that driver experience has significant impacts on fuel consumption performance. The real differences lie in the individual drivers, as the worst performing drivers have significantly higher fuel consumption rates than other drivers, for both novice and experienced drivers. The findings suggest that adopting eco-driving skills could deliver significant reductions in fuel consumption and emissions simultaneously for the worst performing drivers, regardless of driving experience

    Impact of potential engine malfunctions on fuel consumption and gaseous emissions of a Euro VI diesel truck.

    No full text
    Although new vehicles are designed to comply with specific emission regulations, their in-service performance would not necessarily achieve them due to wear-and-tear and improper maintenance, as well as tampering or failure of engine control and exhaust after-treatment systems. In addition, there is a lack of knowledge on how significantly these potential malfunctions affect vehicle performance. This study was therefore conducted to simulate the effect of various engine malfunctions on the fuel consumption and gaseous emissions of a 16-tonne Euro VI diesel truck using transient chassis dynamometer testing. The simulated malfunctions included those that would commonly occur in the intake, fuel injection, exhaust after-treatment and other systems. The results showed that all malfunctions increased fuel consumption except for the malfunction of EGR fully closed which reduced fuel consumption by 31%. The biggest increases in fuel consumption were caused by malfunctions in the intake system (16%–43%), followed by the exhaust after-treatment (6%–30%), fuel injection (4%–24%) and other systems (6%–11%). Regarding pollutant emissions, the effect of engine malfunctions on HC and CO emissions was insignificant, which remained unchanged or even reduced for most cases. An exception was EGR fully open which increased HC and CO emissions by 343% and 1124%, respectively. Contrary to HC and CO emissions, NO emissions were significantly increased by malfunctions. The largest increases in NO emissions were caused by malfunctions in the after-treatment system, ranging from 38% (SCR) to 1606% (DPF pressure sensor). Malfunctions in the fuel injection system (24%–1259%) and intercooler (438%–604%) could also increase NO emissions markedly. This study demonstrated clearly the importance of having properly functioning engine control and exhaust after-treatment systems to achieve the required performance of fuel consumption and pollutant emissions

    Evaluating in-use vehicle emissions using air quality monitoring stations and on-road remote sensing systems

    No full text
    © 2020 Elsevier B.V. This study investigated real world in-use vehicle emissions using two regulatory techniques simultaneously, namely on-road remote sensing (RS) systems and air quality (AQ) monitoring stations, aiming to provide a full pollution profile from tailpipe to roadside and atmosphere. Two large AQ and RS datasets collected during 2012–2018 were analyzed. The effects of various emission control programmes on the trends of tailpipe emissions and air quality were evaluated. Correlations between tailpipe emissions and roadside and ambient air quality were also explored. The results showed a decreasing trend of NO2 at both roadside and ambient AQ stations from 2013 to 2016, which was attributed to the intensive implementation of a series of vehicle emissions control programmes. Although NO2 was decreasing, O3 was generally increasing for all AQ stations. AQ data showed that O3 had little correlation with either NO2 or NOx, but was mainly determined by NO2/NOx ratio. Roadside NO2/NOx ratio increased first and then decreased or stabilized after 2014, while ambient NO2/NOx ratio increased steadily. RS data showed that the overall NO decreased quickly during 2012–2015 and then decreased moderately after 2015. The decrease was mainly attributed to the effective NO reduction from LPG vehicles. However, diesel NO remained high and reduced relatively slowly during the study period. Gasoline vehicles were relatively clean compared with LPG and diesel vehicles. Finally, good correlations were demonstrated between NO measured by RS sites and NOx measured by roadside AQ stations, indicating that vehicle emissions were the major contributor to roadside NOx pollution. Ambient NOx emissions could be affected by various sources, leading to different correlation levels between RS and ambient AQ results
    corecore