26 research outputs found

    Burden of falls attributable to low bone mineral density among people aged 60 years and over in China from 1990 to 2019

    Get PDF
    ObjectiveFalls in older people have become a major public health, economic and societal problem. Osteoporosis predisposes older adults to high risk of falls, which were the most common outcome attributable to low bone mineral density (LBMD). In this study, we analyze the long-term trends in falls burden attributable to LBMD among people aged 60 years and over from 1990 to 2019, using data from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019).MethodsData from GBD 2019 were used to assess the long-term trends in mortality and disability-adjusted life-year (DALY) rates by Joinpoint regression. The age-period-cohort (APC) model was used to evaluate the effects of age, period and cohort on mortality rate of falls attributable to LBMD.ResultsThe mortality and DALYs rates of falls attributable to LBMD among people aged 60 years and over increased from 1990 to 2019, with average annual percentage changes (AAPCs) of 1.74% (95% CI: −1.47 to 2.01%) and 0.99% (95% CI: 0.80–1.19%), respectively. APC analysis revealed that the mortality rate due to LBMD significantly increased among the older people over the age of 75 years. The risk of falls mortality due to LBMD during the period of 1990–2019 initially declined but later elevated. An overall increasing risk for falls death attributable to LBMD was presented across birth cohorts, but in cohorts born after 1930, the upward trend has slowed down. The overall net drift per year attributable to LBMD was above 0. The corresponding results showed that the negative impact of period and cohort effects among males was more pronounced than those among females.ConclusionsFalls attributable to LBMD remain an ongoing health burden in the older people in China, and the mortality has been on the rise from 1990 to 2019, especially among the older people aged 80+ years group. The prevention and treatment of LBMD should be emphasized, especially among males and oldest-old people. Furthermore, there is an urgent need to strengthen the implementation of system-wide, integrated and effective public health policies and other health interventions in China

    Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.

    Get PDF
    The genomes of cancers deficient in mismatch repair contain exceptionally high numbers of somatic mutations. In a proof-of-concept study, we previously showed that colorectal cancers with mismatch repair deficiency were sensitive to immune checkpoint blockade with antibodies to programmed death receptor-1 (PD-1). We have now expanded this study to evaluate the efficacy of PD-1 blockade in patients with advanced mismatch repair-deficient cancers across 12 different tumor types. Objective radiographic responses were observed in 53% of patients, and complete responses were achieved in 21% of patients. Responses were durable, with median progression-free survival and overall survival still not reached. Functional analysis in a responding patient demonstrated rapid in vivo expansion of neoantigen-specific T cell clones that were reactive to mutant neopeptides found in the tumor. These data support the hypothesis that the large proportion of mutant neoantigens in mismatch repair-deficient cancers make them sensitive to immune checkpoint blockade, regardless of the cancers\u27 tissue of origin

    Analysis on Impact of Land Use Change on Urban Waterlogging Caused by Floods

    No full text
    In recent years, ultra-high-intensity rainfall at home and abroad has caused frequent urban waterlogging disasters, posing a severe threat to people’s lives, property and city’s safety. Based on the satellite image data of Shanghai Waigaoqiao Free Trade Zone in different periods and the Storm Water Management Model (SWMM), this paper establishes a model of heavy rainfall under the underlying surface of a complex city, and analyses topographic features, different land use types, rainfall infiltration intensity and the characteristics of the drainage pipe network. The rainwater accumulation under different rainstorms and urbanization levels is simulated and analysed. The research results show that urban rainstorm accumulation is closely related to land use changes. With the increase of surface impermeability and rainfall intensity, the risk of waterlogging in the study area tends to increase: From 1994 to 2019, the construction area has increased from 2.5096km2 to 5.8662km2 in the study area. Compared with 1994, under the same rainfall conditions, the simulated flooding node and runoff coefficient in 2019 both increased significantly

    Site Investigation and Remediation of Sulfate-Contaminated Groundwater Using Integrated Hydraulic Capture Techniques

    No full text
    Inorganic pollution is widespread in groundwater, and sulfate pollution is one of the important types, which has an important impact on the ecological environment and human health. Elevated concentrations of sulfate ion pollutants often come from the sewage discharge of chemical plants. This study takes a sulfate-contaminated site in Dongying City, Shandong Province, China, as the research object. Nine boreholes were arranged along the sewage discharge ditches in the site to collect and analyze soil samples and groundwater samples in layers. The concentration of pollutants and the change with depths were determined; the maximum concentration of sulfate ion was 10,330 mg L−1 in groundwater, and the maximum pollution depth was no more than 8 m. A hydraulic barrier was carried out to cut off the pollution sources. Based on a comprehensive understanding of the hydrogeological conditions and pollution degree of the site, the hydraulic capture technique was used to control the water pumping and injection volume, so that the scope of the pollution plume was gradually reduced. The pumping wells were arranged in the polluted area, and the water injection wells were arranged at the outer edge of the pollution zone. According to the calculation of the single well water inflow and influence radius, 28 pumping wells and 66 water injection wells were needed to be arranged on the site. The treatment process was divided into four stages according to the following steps: water pumping, water injection, stoppage of water injection, stoppage of water pumping, collecting water samples after the water level recovered, and the completion stage of treatment. The above process was repeated twice. Chemical precipitation was employed in the last step. The results of the remediation showed that the sulfate concentrations in 54 percent of the samples decreased significantly to less than 100 mg L−1, and the rest were between 100 and 200 mg L−1 after the treatment process. Two pumping wells with serious pollution were selected as long-term monitoring wells, and two-year continuous monitoring results showed that sulfate concentrations in the monitoring wells ranged from 110 to 220 mg L−1, indicating that integrated groundwater remediation techniques are more effective and more reliable than one single technique

    Joint Estimation of Hydraulic and Biochemical Parameters for Reactive Transport Modelling with a Modified ILUES Algorithm

    No full text
    Multicomponent reactive transport modeling is a powerful tool for the comprehensive analysis of coupled hydraulic and biochemical processes. The performance of the simulation model depends on the accuracy of related model parameters whose values are usually difficult to determine from direct measurements. In this situation, estimates of these uncertain parameters can be obtained by solving inverse problems. In this study, an efficient data assimilation method, the iterative local updating ensemble smoother (ILUES), is employed for the joint estimation of hydraulic parameters, biochemical parameters and contaminant source characteristics in the sequential biodegradation process of tetrachloroethene (PCE). In the framework of the ILUES algorithm, parameter estimation is realized by updating local ensemble with the iterative ensemble smoother (IES). To better explore the parameter space, the original ILUES algorithm is modified by determining the local ensemble partly with a linear ranking selection scheme. Numerical case studies based on the sequential biodegradation of PCE are then used to evaluate the performance of the ILUES algorithm. The results show that the ILUES algorithm is able to achieve an accurate joint estimation of related model parameters in the reactive transport model

    Elemental Stoichiometry (C, N, P) of Soil in the Wetland Critical Zone of Dongting Lake, China: Understanding Soil C, N and P Status at Greater Depth

    No full text
    Earth’s critical zone is defined as a plant–soil–water system, which covers a wide area and has a large vertical thickness, but the soil elemental stoichiometry characteristics of the critical zone at different depths are still unclear. In this study, the spatial distribution of soil carbon (C), nitrogen (N) and phosphorus (P) in the critical zone of a typical wetland in Dongting Lake, China, and their ecological chemometric characteristics were analyzed. The results indicated that: (1) the average C, N and P contents were 18.05, 0.86 and 0.52 g/kg, respectively, with a decreasing trend from the surface to the deeper layers. The soil is relatively rich in C and P, while N is the main element limiting plant growth and development. (2) The mean values of soil C/N, N/P and C/P were 21.1, 1.7 and 35.4 respectively, with the C/N ratio and C/P ratio showing a trend of increasing and then decreasing in the vertical direction and reaching a maximum at a depth of 2–5 m below ground. (3) According to the correlation results, C, N and P in soils are coupled and influenced by each other (p < 0.001), and pH, infiltration coefficient and human activities are closely related to the spatial distribution of C, N and P. (4) Stable Redfield ratios (1:1.6:35.4) may exist in lake wetland soils, and future studies should be conducted for complete systems of the same type of wetlands. The results of the study will provide a theoretical basis for the sustainable development and scientific management of lake wetlands

    Occurrence Characteristics of Inorganic Nitrogen in Groundwater in Silty-Clay Riparian Hyporheic Zones under Tidal Action: A Case Study of the Jingzi River in Shanghai, China

    No full text
    For comprehending the effect of tidal action on nitrogen cycle in silty-clay riparian hyporheic zones, the synchronous monitoring of water level and water quality was carried out along a test transect during a spring tidal period from 21 to 23 October 2021. Moreover, the permeability and chemical composition of soil samples from drilled holes were measured. Subsequently, the spatiotemporal variation of inorganic nitrogen concentrations in the groundwater in the riparian hyporheic zone was investigated during the study period, and the potential reason was discussed. It is shown that the delayed response time of groundwater level in the silty-clay riparian zone to the tide-driven fluctuation of the river stage increased with distance from the shore and reached 3.0 h at the position 3.83 m away from the shore. The continuous infiltration of the river water under tide action contributed to the aerobic and neutral riparian hyporheic zone conductive to nitrification. Within 4 m away from the bank, the dominant inorganic nitrogen form changed from NO3&minus;-N to NH4+-N, upon increasing the distance from the bank. Additionally, the removal of nitrogen could occur in the riparian hyporheic zone with aerobic and neutral environment under the conjoint control of nitrification, microbial assimilation, and aerobic denitrification

    Multi-dimensional dynamic simulation of rainstorm waterlogging in urban communities

    No full text
    One major threat to cities at present is the increasing rainstorm waterlogging hazards due to climate change and accelerated urbanization. This paper explores the mechanism of rainstorm waterlogging and enables the fine simulation of surface water propagation over complex urban terrain. A novel community-scale waterlogging modeling scheme is presented by loosely coupling a one-dimensional sewer model with a two-dimensional overland model under an open-source framework. The coupled model was applied to Waigaoqiao Free Trade Zone located in Pudong New Area of Shanghai. To quantify the influence of rainfall intensity and drainage conditions on the waterlogging, 12 scenarios were constructed by combining four rainfall return periods (3, 5, 10, and 20 a) and three startup water depths (1.5, 2.0, and 2.5 m) of pump stations. The multi-scenario simulation results show that the waterlogging risk increases from north to south in the study area, and that risk zones with water depth above 0.3 m are mostly concentrated in the southwest and southeast corners of the site. The longer the rainfall return period, the larger the submerged area, and the spatial distribution of surface water accumulation is affected by local topography and drainage system. In addition, reducing the startup water depth of pump stations has an obvious effect on inhibiting the severity of water accumulation. The results provide insights into overland flow across an urban area with densely populated buildings and help to reduce the risk of rainstorm-induced waterlogging disasters

    Occurrence Characteristics of Inorganic Nitrogen in Groundwater in Silty-Clay Riparian Hyporheic Zones under Tidal Action: A Case Study of the Jingzi River in Shanghai, China

    No full text
    For comprehending the effect of tidal action on nitrogen cycle in silty-clay riparian hyporheic zones, the synchronous monitoring of water level and water quality was carried out along a test transect during a spring tidal period from 21 to 23 October 2021. Moreover, the permeability and chemical composition of soil samples from drilled holes were measured. Subsequently, the spatiotemporal variation of inorganic nitrogen concentrations in the groundwater in the riparian hyporheic zone was investigated during the study period, and the potential reason was discussed. It is shown that the delayed response time of groundwater level in the silty-clay riparian zone to the tide-driven fluctuation of the river stage increased with distance from the shore and reached 3.0 h at the position 3.83 m away from the shore. The continuous infiltration of the river water under tide action contributed to the aerobic and neutral riparian hyporheic zone conductive to nitrification. Within 4 m away from the bank, the dominant inorganic nitrogen form changed from NO3−-N to NH4+-N, upon increasing the distance from the bank. Additionally, the removal of nitrogen could occur in the riparian hyporheic zone with aerobic and neutral environment under the conjoint control of nitrification, microbial assimilation, and aerobic denitrification
    corecore