4 research outputs found

    Computational and experimental analysis of bioactive peptide linear motifs in the integrin adhesome

    No full text
    Therapeutic modulation of protein interactions is challenging, but short linear motifs (SLiMs) represent potential targets. Focal adhesions play a central role in adhesion by linking cells to the extracellular matrix. Integrins are central to this process, and many other intracellular proteins are components of the integrin adhesome. We applied a peptide network targeting approach to explore the intracellular modulation of integrin function in platelets. Firstly, we computed a platelet-relevant integrin adhesome, inferred via homology of known platelet proteins to adhesome components. We then computationally selected peptides from the set of platelet integrin adhesome cytoplasmic and membrane adjacent protein-protein interfaces. Motifs of interest in the intracellular component of the platelet integrin adhesome were identified using a predictor of SLiMs based on analysis of protein primary amino acid sequences (SLiMPred), a predictor of strongly conserved motifs within disordered protein regions (SLiMPrints), and information from the literature regarding protein interactions in the complex. We then synthesized peptides incorporating these motifs combined with cell penetrating factors (tat peptide and palmitylation for cytoplasmic and membrane proteins respectively). We tested for the platelet activating effects of the peptides, as well as their abilities to inhibit activation. Bioactivity testing revealed a number of peptides that modulated platelet function, including those derived from α-actinin (ACTN1) and syndecan (SDC4), binding to vinculin and syntenin respectively. Both chimeric peptide experiments and peptide combination experiments failed to identify strong effects, perhaps characterizing the adhesome as relatively robust against within-adhesome synergistic perturbation. We investigated in more detail peptides targeting vinculin. Combined experimental and computational evidence suggested a model in which the positively charged tat-derived cell penetrating part of the peptide contributes to bioactivity via stabilizing charge interactions with a region of the ACTN1 negatively charged surface. We conclude that some interactions in the integrin adhesome appear to be capable of modulation by short peptides, and may aid in the identification and characterization of target sites within the complex that may be useful for therapeutic modulation

    Case report: hypergranular platelets in vaccine-induced thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination

    No full text
    Background: Vaccine-induced thrombotic thrombocytopenia (VITT) post SARS-CoV-2 vaccination is characterized by thrombocytopenia and severe thrombosis. Platelet function during patient recovery in the medium-/long-term has not been investigated fully. Here, we undertook a 3-month study, assessing the recovery of a VITT patient and assessing platelet morphology, granule content and dense-granule release at two distinct time points during recovery.Case presentation: A 61 year-old female was admitted to hospital 15 days post ChAdOx1 nCov-19 vaccination. Hematological parameters and peripheral blood smears were monitored over 3 months. Platelet morphology and granule populations were assessed using transmission electron microscopy (TEM) at two distinct time points during recovery, as was agonist-induced platelet dense-granule release. Upon admission, the patient had reduced platelet counts, increased D-dimer and high anti-PF4 antibodies with multiple sites of cerebral venous sinus thrombosis (CVST). Peripheral blood smears revealed the presence of large, hypergranular platelets. Following treatment, hematological parameters returned to normal ranges over the study period. Anti-PF4 antibodies remained persistently high up to 90 days post-admission. Two days after admission, VITT platelets contained more granules per-platelet when compared to day 72 and healthy platelets. Additionally, maximal ATP release (marker of dense-granule release) was increased on day 2 compared to day 72 and healthy control platelets.Conclusion: This study highlights a previously unreported observation of platelet hypergranularity in VITT which may contribute to the thrombotic risk associated with VITT. Optimal approaches to monitoring recovery from VITT over time remains to be determined but our findings may help inform therapeutic decisions relating to anticoagulation treatment in this novel pathology.</div

    Omega-3 index and blood pressure responses to eating foods naturally enriched with omega-3 polyunsaturated fatty acids: a randomized controlled trial

    No full text
    Diets low in seafood omega-3 polyunsaturated fatty acids (PUFAs) are very prevalent. Such diets have recently been ranked as the sixth most important dietary risk factor—1.5 million deaths and 33 million disability-adjusted life-years worldwide are attributable to this deficiency. Wild oily fish stocks are insufficient to feed the world’s population, and levels of eicosapentaenoic acid and docosahexaenoic acid (DHA) in farmed fish have more than halved in the last 20 years. Here we report on a double-blinded, controlled trial, where 161 healthy normotensive adults were randomly allocated to eat at least three portions/week of omega-3-PUFA enriched (or control) chicken-meat, and to eat at least three omega-3-PUFA enriched (or control) eggs/week, for 6 months. We show that regular consumption of omega-3-PUFA enriched chicken-meat and eggs significantly increased the primary outcome, the red cell omega-3 index (mean difference [98.75% confidence interval] from the group that ate both control foods, 1.7% [0.7, 2.6]). Numbers of subjects with a very high-risk omega-3 index (index < 4%) were more than halved amongst the group that ate both enriched foods. Furthermore, eating the enriched foods resulted in clinically relevant reductions in diastolic blood pressure (− 3.1 mmHg [− 5.8, − 0.3]). We conclude that chicken-meat and eggs, naturally enriched with algae-sourced omega-3-PUFAs, may serve as alternative dietary sources of these essential micronutrients. Unlike many lifestyle interventions, long-term population health benefits do not depend on willingness of individuals to make long-lasting difficult dietary changes, but on the availability of a range of commonly eaten, relatively inexpensive, omega-3-PUFA enriched foods

    COVID-19 induces a hyperactive phenotype in circulating platelets

    No full text
    Coronavirus Disease 2019 (COVID-19), caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has affected over 30 million globally to date. Although high rates of venous thromboembolism and evidence of COVID-19-induced endothelial dysfunction have been reported, the precise aetiology of the increased thrombotic risk associated with COVID-19 infection remains to be fully elucidated. Therefore, we assessed clinical platelet parameters and circulating platelet activity in patients with severe and nonsevere COVID-19. An assessment of clinical blood parameters in patients with severe COVID-19 disease (requiring intensive care), patients with nonsevere disease (not requiring intensive care), general medical in-patients without COVID-19, and healthy donors was undertaken. Platelet function and activity were also assessed by secretion and specific marker analysis. We demonstrated that routine clinical blood parameters including increased mean platelet volume (MPV) and decreased platelet:neutrophil ratio are associated with disease severity in COVID-19 upon hospitalisation and intensive care unit (ICU) admission. Strikingly, agonist-induced ADP release was 30- to 90-fold higher in COVID-19 patients compared with hospitalised controls and circulating levels of platelet factor 4 (PF4), soluble P-selectin (sP-selectin), and thrombopoietin (TPO) were also significantly elevated in COVID-19. This study shows that distinct differences exist in routine full blood count and other clinical laboratory parameters between patients with severe and nonsevere COVID-19. Moreover, we have determined all COVID-19 patients possess hyperactive circulating platelets. These data suggest abnormal platelet reactivity may contribute to hypercoagulability in COVID-19 and confirms the role that platelets/clotting has in determining the severity of the disease and the complexity of the recovery path.</div
    corecore