7,139 research outputs found

    Edge chirality determination of graphene by Raman spectroscopy

    Full text link
    Raman imaging on the edges of single layer micromechanical cleavage graphene (MCG) was carried out. The intensity of disorder-induced Raman feature (D band at ~1350 cm-1) was found to be correlated to the edge chirality: it is stronger at the armchair edge and weaker at the zigzag edge. This shows that Raman spectroscopy is a reliable and practical method to identify the chirality of graphene edge and to help in determination of the crystal orientation. The determination of graphene chirality is critically important for fundamental study as well as for applications.Comment: 14 pages, 3 figures, 1 tabl

    Giant Impact Induced Atmospheric Blow-Off

    Get PDF
    Previous calculations indicate that the Earth suffered impacts from objects up to Mars size. Such a giant impact may have produced a temporary ejecta-based ring that accreted to form the Moon. To simulate the surface waves from such events we approximated the cratering source as a buried pressurized sphere. For a 10^27 J impactor we calculated the resulting surface wave using the mode summation method of Sato et al.. For such an impact, the solid Earth free-surface velocity above, and antipodal to, the source achieves 2.6 and 1.9 km/s. Such large ground motions pump the atmosphere and result in upward particle motions which cause the atmosphere to be accelerated to excess of the escape velocity (11.2 km/s) at high altitudes. For a 1.3 × 10^32 J Moon-forming impact we calculate that ~50% of the Earth's atmosphere is accelerated to escape

    An Adaptive Characteristic-wise Reconstruction WENOZ scheme for Gas Dynamic Euler Equations

    Full text link
    Due to its excellent shock-capturing capability and high resolution, the WENO scheme family has been widely used in varieties of compressive flow simulation. However, for problems containing strong shocks and contact discontinuities, such as the Lax shock tube problem, the WENO scheme still produces numerical oscillations. To avoid such numerical oscillations, the characteristic-wise construction method should be applied. Compared to component-wise reconstruction, characteristic-wise reconstruction leads to much more computational cost and thus is not suite for large scale simulation such as direct numeric simulation of turbulence. In this paper, an adaptive characteristic-wise reconstruction WENO scheme, i.e. the AdaWENO scheme, is proposed to improve the computational efficiency of the characteristic-wise reconstruction method. The new scheme performs characteristic-wise reconstruction near discontinuities while switching to component-wise reconstruction for smooth regions. Meanwhile, a new calculation strategy for the WENO smoothness indicators is implemented to reduce over-all computational cost. Several one dimensional and two dimensional numerical tests are performed to validate and evaluate the AdaWENO scheme. Numerical results show that AdaWENO maintains essentially non-oscillatory flow field near discontinuities as the characteristic-wise reconstruction method. Besieds, compared to the component-wise reconstruction, AdaWENO is about 40\% faster which indicates its excellent efficiency
    • …
    corecore