437 research outputs found
POIReviewQA: A Semantically Enriched POI Retrieval and Question Answering Dataset
Many services that perform information retrieval for Points of Interest (POI)
utilize a Lucene-based setup with spatial filtering. While this type of system
is easy to implement it does not make use of semantics but relies on direct
word matches between a query and reviews leading to a loss in both precision
and recall. To study the challenging task of semantically enriching POIs from
unstructured data in order to support open-domain search and question answering
(QA), we introduce a new dataset POIReviewQA. It consists of 20k questions
(e.g."is this restaurant dog friendly?") for 1022 Yelp business types. For each
question we sampled 10 reviews, and annotated each sentence in the reviews
whether it answers the question and what the corresponding answer is. To test a
system's ability to understand the text we adopt an information retrieval
evaluation by ranking all the review sentences for a question based on the
likelihood that they answer this question. We build a Lucene-based baseline
model, which achieves 77.0% AUC and 48.8% MAP. A sentence embedding-based model
achieves 79.2% AUC and 41.8% MAP, indicating that the dataset presents a
challenging problem for future research by the GIR community. The result
technology can help exploit the thematic content of web documents and social
media for characterisation of locations
SE-KGE: A Location-Aware Knowledge Graph Embedding Model for Geographic Question Answering and Spatial Semantic Lifting
Learning knowledge graph (KG) embeddings is an emerging technique for a
variety of downstream tasks such as summarization, link prediction, information
retrieval, and question answering. However, most existing KG embedding models
neglect space and, therefore, do not perform well when applied to (geo)spatial
data and tasks. For those models that consider space, most of them primarily
rely on some notions of distance. These models suffer from higher computational
complexity during training while still losing information beyond the relative
distance between entities. In this work, we propose a location-aware KG
embedding model called SE-KGE. It directly encodes spatial information such as
point coordinates or bounding boxes of geographic entities into the KG
embedding space. The resulting model is capable of handling different types of
spatial reasoning. We also construct a geographic knowledge graph as well as a
set of geographic query-answer pairs called DBGeo to evaluate the performance
of SE-KGE in comparison to multiple baselines. Evaluation results show that
SE-KGE outperforms these baselines on the DBGeo dataset for geographic logic
query answering task. This demonstrates the effectiveness of our
spatially-explicit model and the importance of considering the scale of
different geographic entities. Finally, we introduce a novel downstream task
called spatial semantic lifting which links an arbitrary location in the study
area to entities in the KG via some relations. Evaluation on DBGeo shows that
our model outperforms the baseline by a substantial margin.Comment: Accepted to Transactions in GI
Narrative Cartography with Knowledge Graphs
Narrative cartography is a discipline which studies the interwoven nature of stories and maps. However, conventional geovisualization techniques of narratives often encounter several prominent challenges, including the data acquisition & integration challenge and the semantic challenge. To tackle these challenges, in this paper, we propose the idea of narrative cartography with knowledge graphs (KGs). Firstly, to tackle the data acquisition & integration challenge, we develop a set of KG-based GeoEnrichment toolboxes to allow users to search and retrieve relevant data from integrated cross-domain knowledge graphs for narrative mapping from within a GISystem. With the help of this tool, the retrieved data from KGs are directly materialized in a GIS format which is ready for spatial analysis and mapping. Two use cases — Magellan’s expedition and World War II — are presented to show the effectiveness of this approach. In the meantime, several limitations are identified from this approach, such as data incompleteness, semantic incompatibility, and the semantic challenge in geovisualization. For the later two limitations, we propose a modular ontology for narrative cartography, which formalizes both the map content (Map Content Module) and the geovisualization process (Cartography Module). We demonstrate that, by representing both the map content and the geovisualization process in KGs (an ontology), we can realize both data reusability and map reproducibility for narrative cartography
CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations
Geo-tagged images are publicly available in large quantities, whereas labels
such as object classes are rather scarce and expensive to collect. Meanwhile,
contrastive learning has achieved tremendous success in various natural image
and language tasks with limited labeled data. However, existing methods fail to
fully leverage geospatial information, which can be paramount to distinguishing
objects that are visually similar. To directly leverage the abundant geospatial
information associated with images in pre-training, fine-tuning, and inference
stages, we present Contrastive Spatial Pre-Training (CSP), a self-supervised
learning framework for geo-tagged images. We use a dual-encoder to separately
encode the images and their corresponding geo-locations, and use contrastive
objectives to learn effective location representations from images, which can
be transferred to downstream supervised tasks such as image classification.
Experiments show that CSP can improve model performance on both iNat2018 and
fMoW datasets. Especially, on iNat2018, CSP significantly boosts the model
performance with 10-34% relative improvement with various labeled training data
sampling ratios.Comment: In: ICML 2023, Jul 23 - 29, 2023, Honolulu, Hawaii, US
- …