1,490 research outputs found
Nonlinear Localization in Metamaterials
Metamaterials, i.e., artificially structured ("synthetic") media comprising
weakly coupled discrete elements, exhibit extraordinary properties and they
hold a great promise for novel applications including super-resolution imaging,
cloaking, hyperlensing, and optical transformation. Nonlinearity adds a new
degree of freedom for metamaterial design that allows for tuneability and
multistability, properties that may offer altogether new functionalities and
electromagnetic characteristics. The combination of discreteness and
nonlinearity may lead to intrinsic localization of the type of discrete
breather in metallic, SQUID-based, and symmetric metamaterials. We
review recent results demonstrating the generic appearance of breather
excitations in these systems resulting from power-balance between intrinsic
losses and input power, either by proper initialization or by purely dynamical
procedures. Breather properties peculiar to each particular system are
identified and discussed. Recent progress in the fabrication of low-loss,
active and superconducting metamaterials, makes the experimental observation of
breathers in principle possible with the proposed dynamical procedures.Comment: 19 pages, 14 figures, Invited (Review) Chapte
Effects of Crystalline Anisotropy and Indenter Size on Nanoindentation by Multiscale Simulation
Nanoindentation processes in single crystal Ag thin film under different crystallographic orientations and various indenter widths are simulated by the quasicontinuum method. The nanoindentation deformation processes under influences of crystalline anisotropy and indenter size are investigated about hardness, load distribution, critical load for first dislocation emission and strain energy under the indenter. The simulation results are compared with previous experimental results and Rice-Thomson (R-T) dislocation model solution. It is shown that entirely different dislocation activities are presented under the effect of crystalline anisotropy during nanoindentation. The sharp load drops in the load–displacement curves are caused by the different dislocation activities. Both crystalline anisotropy and indenter size are found to have distinct effect on hardness, contact stress distribution, critical load for first dislocation emission and strain energy under the indenter. The above quantities are decreased at the indenter into Ag thin film along the crystal orientation with more favorable slip directions that easy trigger slip systems; whereas those will increase at the indenter into Ag thin film along the crystal orientation with less or without favorable slip directions that hard trigger slip systems. The results are shown to be in good agreement with experimental results and R-T dislocation model solution
Past Achievements and Future Challenges in 3D Photonic Metamaterials
Photonic metamaterials are man-made structures composed of tailored micro- or
nanostructured metallo-dielectric sub-wavelength building blocks that are
densely packed into an effective material. This deceptively simple, yet
powerful, truly revolutionary concept allows for achieving novel, unusual, and
sometimes even unheard-of optical properties, such as magnetism at optical
frequencies, negative refractive indices, large positive refractive indices,
zero reflection via impedance matching, perfect absorption, giant circular
dichroism, or enhanced nonlinear optical properties. Possible applications of
metamaterials comprise ultrahigh-resolution imaging systems, compact
polarization optics, and cloaking devices. This review describes the
experimental progress recently made fabricating three-dimensional metamaterial
structures and discusses some remaining future challenges
Spatially oriented plasmonic ‘nanograter’ structures
One of the key motivations in producing 3D structures has always been the realization of metamaterials with effective constituent properties that can be tuned in all propagation directions at various frequencies. Here, we report the investigation of spatially oriented “Nanograter” structures with orientation-dependent responses over a wide spectrum by focused-ion-beam based patterning and folding of thin film nanostructures. Au nano units of different shapes, standing along specifically designated orientations, were fabricated. Experimental measurements and simulation results show that such structures offer an additional degree of freedom for adjusting optical properties with the angle of inclination, in additional to the size of the structures. The response frequency can be varied in a wide range (8 μm–14 μm) by the spatial orientation (0°–180°) of the structures, transforming the response from magnetic into electric coupling. This may open up prospects for the fabrication of 3D nanostructures as optical interconnects, focusing elements and logic elements, moving toward the realization of 3D optical circuits
In vivo tissue uptake of intravenously injected water soluble all-trans β-carotene used as a food colorant
Water soluble β-carotene (WS-BC) is a carotenoid form that has been developed as a food colorant. WS-BC is known to contain 10% of all-trans β-carotene (AT-BC). The aim of the present study was to investigate in vivo tissue uptake of AT-BC after the administration of WS-BC into rats. Seven-week-old male rats were administered 20 mg of WS-BC dissolved in saline by intravenous injection into the tail vein. At 0, 6, 24, 72, 120 and 168 hours (n = 7/time), blood was drawn and liver, lungs, adrenal glands, kidneys and testes were dissected. The levels of AT-BC in the plasma and dissected tissues were quantified with HPLC. After intravenous administration, AT-BC level in plasma first increased up to 6 h and returned to normal at 72 h. In the testes, the AT-BC level first increased up to 24 h and then did not decrease but was retained up to 168 h. In the other tissues, the level first increased up to 6 h and then decreased from 6 to 120 or 168 h but did not return to normal. The accumulation of WS-BC in testes but not in the other 5 tissues examined may suggest that AT-BC was excreted or metabolized in these tissues but not in testes. Although WS-BC is commonly used as a food colorant, its effects on body tissues are still not clarified. Results of the present study suggest that further investigations are required to elucidate effects of WS-BC on various body tissues
Detection of mismatch repair gene germline mutation carrier among Chinese population with colorectal cancer
<p>Abstract</p> <p>Background</p> <p>Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant syndrome. The National Cancer Institute (NCI) has recommended the Revised Bethesda guidelines for screening HNPCC. There has been a great deal of research on the value of these tests in other countries. However, literature about the Chinese population is scarce. Our objective is to detect and study microsatellite instability (MSI) and mismatch repair (MMR) gene germline mutation carriers among a Chinese population with colorectal cancer.</p> <p>Methods</p> <p>In 146 prospectively recruited consecutive patients with clinically proven colorectal cancer, MSI carriers were identified by analysis of tumor tissue using multiplex fluorescence polymerase chain reaction (PCR) using the NCI recommended panel and classified into microsatellite instability-low (MSI-L), microsatellite instability-high (MSI-H) and microsatellite stable (MSS) groups. Immunohistochemical staining for MSH2, MSH6 and MLH1 on tissue microarrays (TMAs) was performed, and methylation of the MLH1 promoter was analyzed by quantitative methylation specific PCR (MSP). Germline mutation analysis of blood samples was performed for MSH2, MSH6 and MLH1 genes.</p> <p>Results</p> <p>Thirty-four out of the 146 colorectal cancers (CRCs, 23.2%) were MSI, including 19 MSI-H CRCs and 15 MSI-L CRCS. Negative staining for MSH2 was found in 8 CRCs, negative staining for MSH6 was found in 6 CRCs. One MSI-H CRC was negative for both MSH6 and MSH2. Seventeen CRCs stained negatively for MLH1. MLH1 promoter methylation was determined in 34 MSI CRCs. Hypermethylation of the MLH1 promoter occurred in 14 (73.7%) out of 19 MSI-H CRCs and 5 (33.3%) out of 15 MSI-L CRCs. Among the 34 MSI carriers and one MSS CRC with MLH1 negative staining, 8 had a MMR gene germline mutation, which accounted for 23.5% of all MSI colorectal cancers and 5.5% of all the colorectal cancers. Five patients harbored MSH2 germline mutations, and three patients harbored MSH6 germline mutations. None of the patients had an MLH1 mutation. Mutations were commonly located in exon 7 and 12 of MSH2 and exon 5 of MSH6. Right colonic lesions and mucinous carcinoma were not common in MSI carriers.</p> <p>Conclusion</p> <p>Our data may imply that the characteristics of HNPCC in the Chinese population are probably different from those of Western countries. Application of NCI recommended criteria may not be effective enough to identify Chinese HNPCC families. Further studies are necessary to echo or refute our results so as to make the NCI recommendation more universally applicable.</p
Measuring the gravitational field in General Relativity: From deviation equations and the gravitational compass to relativistic clock gradiometry
How does one measure the gravitational field? We give explicit answers to
this fundamental question and show how all components of the curvature tensor,
which represents the gravitational field in Einstein's theory of General
Relativity, can be obtained by means of two different methods. The first method
relies on the measuring the accelerations of a suitably prepared set of test
bodies relative to the observer. The second methods utilizes a set of suitably
prepared clocks. The methods discussed here form the basis of relativistic
(clock) gradiometry and are of direct operational relevance for applications in
geodesy.Comment: To appear in "Relativistic Geodesy: Foundations and Application", D.
Puetzfeld et. al. (eds.), Fundamental Theories of Physics, Springer 2018, 52
pages, in print. arXiv admin note: text overlap with arXiv:1804.11106,
arXiv:1511.08465, arXiv:1805.1067
Limits on WWZ and WW\gamma couplings from p\bar{p}\to e\nu jj X events at \sqrt{s} = 1.8 TeV
We present limits on anomalous WWZ and WW-gamma couplings from a search for
WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p
-> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron
Collider during the 1992-1995 run. The data sample corresponds to an integrated
luminosity of 96.0+-5.1 pb^(-1). Assuming identical WWZ and WW-gamma coupling
parameters, the 95% CL limits on the CP-conserving couplings are
-0.33<lambda<0.36 (Delta-kappa=0) and -0.43<Delta-kappa<0.59 (lambda=0), for a
form factor scale Lambda = 2.0 TeV. Limits based on other assumptions are also
presented.Comment: 11 pages, 2 figures, 2 table
- …