87 research outputs found

    Superconducting Magnet Technology and Applications

    Get PDF

    Secure Detection of Image Manipulation by means of Random Feature Selection

    Full text link
    We address the problem of data-driven image manipulation detection in the presence of an attacker with limited knowledge about the detector. Specifically, we assume that the attacker knows the architecture of the detector, the training data and the class of features V the detector can rely on. In order to get an advantage in his race of arms with the attacker, the analyst designs the detector by relying on a subset of features chosen at random in V. Given its ignorance about the exact feature set, the adversary attacks a version of the detector based on the entire feature set. In this way, the effectiveness of the attack diminishes since there is no guarantee that attacking a detector working in the full feature space will result in a successful attack against the reduced-feature detector. We theoretically prove that, thanks to random feature selection, the security of the detector increases significantly at the expense of a negligible loss of performance in the absence of attacks. We also provide an experimental validation of the proposed procedure by focusing on the detection of two specific kinds of image manipulations, namely adaptive histogram equalization and median filtering. The experiments confirm the gain in security at the expense of a negligible loss of performance in the absence of attacks

    Performance of barium titanate@ carbon nanotube nanocomposite as an electromagnetic wave absorber

    Get PDF
    Barium titanate (BT) nanoparticles were fabricated using sol–gel method, and then immobilized onto the surface of carbon nanotubes (CNTs) to fabricate heterogeneous barium titanate@carbon nanotube (BT@CNT) nanocomposites. The electromagnetic (EM) wave absorption ability increased as the weight fraction of BT@CNT increased. The BT@CNT 30 wt.% nanocomposites with thickness of 1.1 mm showed a minimum reflection loss (R.L.) of ∼ − 37.2 dB (> 99.98% absorption) at 13.9 GHz with a response bandwidth of 1.6 GHz (12.3 ∼ 13.9 GHz), and were the best absorber when compared to similar nanocomposites with different thicknesses. The relationship between conductivity and EM wave absorption properties was also discussed. Appropriate conductivity also plays an important role to obtain optimum absorption performance. BT@CNT nanocomposites exhibited significant absorption ability, and this indicates that they can be utilized as an effective EM wave absorber material

    Overexpression of Peptide-Encoding OsCEP6.1 Results in Pleiotropic Effects on Growth in Rice (O. sativa)

    Get PDF
    Plant peptide hormone plays an important role in regulating plant developmental programs via cell-to-cell communication in a non-cell autonomous manner. To characterize the biological relevance of C-TERMINALLY ENCODED PEPTIDE (CEP) genes in rice, we performed a genome-wide search against public databases using bioinformatics approach and identified six additional CEP members. Expression analysis revealed a spatial-temporal pattern of OsCEP6.1 gene in different tissues and at different developmental stages of panicle. Interestingly, the expression level of the OsCEP6.1 was also significantly up-regulated by exogenous cytokinin. Application of a chemically synthesized 15-amino-acid OsCEP6.1 peptide showed that OsCEP6.1 had a negative role in regulating root and seedling growth, which was further confirmed by transgenic lines. Furthermore, the constitutive expression of OsCEP6.1 was sufficient to lead to panicle architecture and grain size variations. Scanning electron microscopy analysis revealed that the phenotypic variation of OsCEP6.1 overexpression lines resulted from decreased cell size but not reduced cell number. Moreover, starch accumulation was not significantly affected. Taken together, these data collectively suggest that the OsCEP6.1 peptide might be involved in regulating the development of panicles and grains in rice

    Correlation analysis between foot deformity and diabetic foot with radiographic measurement

    Get PDF
    BackgroundFoot deformity is a risk factor for diabetic foot ulcer. This study was aimed to investigate the relationship between hallux valgus (HV) and diabetic foot through the radiographic measurement.MethodsThe patients with diabetic foot hospitalizing in the Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University from September 2016 to June 2020 were selected. Then the foot plain X-ray radiographs were completed, and the size of HV angle (HVA) was measured. Their clinical data were collected, and the ulcer recurrence rate, amputation rate and mortality rate of the patients were followed up.ResultsA total of 370 patients were included. According to HVA, patients were divided into non-HV group (HVA<15°), and mild (15°≤HVA ≤ 20°), moderate (20°<HVA ≤ 40°) and severe (HVA>40°) HV groups. The age, height, BMI, smoking history and glycosylated hemoglobin level among the non-HVA, mild, moderate, and severe HV group (P<0.05), while smoking history, HbA1c, eGFR and autonomic neuropathy were significantly lower in HV group than those in non-HV group (P<0.05). The ulcer area in patients with moderate HV was larger than that in non-HV patients, and the severity of infection in patients with severe HV was significantly higher than that the other three groups (P<0.05).ConclusionThe occurrence of HV is not only related to age and BMI, but also to the creatinine and eGFR level, autonomic neuropathy, lower limb arteriosclerosis occlusion, coronary heart disease and hypertension. Therefore, more attention should be paid to renal function screening, neuropathy screening and evaluation of lower extremity vascular lesions in patients with diabetes, especially those with moderate or higher HV

    Lunar meteorites: witnesses of the composition and evolution of the Moon

    Get PDF
    Lunar meteorites are fragments of the Moon that escaped the gravity of the Moon following high-energy impacts by asteroids, subsequently fell to Earth. An inventory of 165 lunar meteorites has been developed since the discovery and identification of the first lunar meteorite, ALHA 81005, in 1979. Although the Apollo samples are much heavier in mass than lunar meteorites, the meteorites are still an important sample supplement for scientific research on the composition and history of the Moon. Apart from a small amount of unbrecciated crystalline rocks, the majority of lunar meteorites are breccias that can be classified into three groups: highland feldspathic breccia, mare basaltic breccia, and mingled(including fledspathic and basaltic clasts) breccia. The petrography of lunar rocks suggests that there are a series of rock types of anorthosite, basalt, gabbro, troctolite, norite and KREEP in the Moon. Although KREEP is rare in lunar rocks, KREEP components have been found in the increasing number of lunar meteorites. KREEP provides important information on lunar magmatic evolution, e.g., the VHK KREEP clasts in SaU 169 may represent the pristine lunar magma (urKREEP). Six launching pairs of lunar meteorites have been proposed now, along with ten possible lunar launching sites. In addition, symplectite is often found in lunar basalts, which is a significant record of shock metamorphism on the lunar surface. Furthermore, isotopic ages and noble gases not only provide information on crystallization processes in lunar rocks and the formation of lunar crust, but also provide insight into shock events on the lunar surface

    Ag/CNT nanocomposites and their single-and double-layer electromagnetic wave absorption properties

    Get PDF
    The electromagnetic wave absorption properties of single- and double-layer silver nanoparticle/carbon nanotube (Ag/CNT) nanocomposites were evaluated. The reflection loss (R.L.) of the samples was calculated based on the measured complex permittivity and permeability. The double-layer composites constructed from CNT 30 wt.% and Ag/CNT 30 wt.% with total thickness of 3.3 mm showed a minimum R.L. of ~-52.9 dB (over 99.999% absorption) at 6.3 GHz. The bandwidth of reflection loss less than -10 dB was observed at 3 regions, with wideness of 3.5, 0.8, and 1.5 GHz. Thin absorber with large R.L. and wide response bandwidth at low and high frequency regions can be obtained with double-layer composites. The capability to modulate the absorption and bandwidth of these samples to suit various applications in different frequency bands indicates that these nanocomposites could be an excellent electromagnetic wave absorber

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • …
    corecore