16 research outputs found

    Role of Bromide in Hydrogen Peroxide Oxidation of CTAB-Stabilized Gold Nanorods in Aqueous Solutions

    No full text
    In recent years hydrogen peroxide has often been used as the oxidizing agent to tune the resonance wavelength of gold nanorods (AuNRs) through anisotropic shortening in the presence of cetyltrimethylammonium bromide (CTAB). However, a complete picture of the reaction mechanism remains elusive. In this work, we present a systematic study on the mechanism of the AuNR oxidation by revealing the important role of bromide. Hydrogen peroxide slowly oxidizes bromide into elemental bromine. The latter two form tribromide, which exhibits a characteristic 272 nm absorption peak. The peak intensity, representing the concentration of tribromide, is found to have a linear correlation with the oxidation rate of AuNRs. Tribromide approaches AuNRs through conjugating strongly with CTA cationic micelles, which leads to the oxidation occurring on the surface of AuNRs. In contrast, the CTA micelles protect AuNRs from the direct oxidation by hydrogen peroxide. Our findings are believed to provide new insights into the reaction mechanism occurring in the relevant CTAB-AuNR systems, which can be important for understanding the principles governing the reaction dynamics

    Chainlike assembly of oleic acid-capped NaYF4:Yb,Er nanoparticles and their fixing by silica encapsulation

    No full text
    We demonstrate, through simply tuning the polarity of the dispersant system, that oleic acid (OA)-capped NaYF4 nanoparticles can be self-assembled into chainlike structures. The assembled chainlike structures were further fixed by silica encapsulation via the Stober method. The reported approach can be readily extended to other OA-capped nanoparticles in organic solvents

    Metal Adsorbate-Induced Plasmon Damping in Gold Nanorods: The Difference Between Metals

    No full text
    We presented a single particle study on the metal adsorbate-induced plasmon damping in Au nanorods (AuNRs) through adsorbing clusters of different metals including Pt, Au and Ag. AuNRs with different longitudinal surface plasmon resonance (LSPR) wavelength were measured and investigated individually. Linewidth broadening, plasmon shift and reduction of plasmonic resonance of single AuNRs were studied and compared between Pt, Au and Ag adsorbates. The measured linewidths perfectly match the theoretical predictions of the billiard model with increased scattering coefficients resulted from the metal adsorbates. The results indicate that the plasmon damping in case of Ag is signiffcantly weaker than Pt and Au, which can be attributed to longer relaxation time of free electrons in Ag and therefore less loss of the oscillating plasmon electrons. In contrast to the red shift observed from Au and Pt, blue shift of the LSPR is observed in case of Ag. It suggests that plasmonic properties brought by the metal adsorbates can exert dramatic influence on the nanoparticle that is adsorbed with. We believe that our study not only provides important understanding on plasmon damping but pave the road for the fabrication of complex nanostructures with two or more metal elements

    Surface-enhanced Raman scattering from AgNP-graphene-AgNP sandwiched nanostructures

    No full text
    We developed a facile approach toward hybrid AgNP-graphene-AgNP sandwiched structures using self-organized monolayered AgNPs from wet chemical synthesis for the optimized enhancement of the Raman response of monolayer graphene. We demonstrate that the Raman scattering of graphene can be enhanced 530 fold in the hybrid structure. The Raman enhancement is sensitively dependent on the hybrid structure, incident angle, and excitation wavelength. A systematic simulation is performed, which well explains the enhancement mechanism. Our study indicates that the enhancement resulted from the plasmonic coupling between the AgNPs on the opposite sides of graphene. Our approach towards ideal substrates offers great potential to produce a "hot surface" for enhancing the Raman response of two-dimensional materials

    Angle-Resolved Plasmonic Properties of Single Gold Nanorod Dimers

    No full text
    Through wet-chemical assembly methods, gold nanorods were placed close to each other and formed a dimer with a gap distance similar to 1 nm, and hence degenerated plasmonic dipole modes of individual nanorods coupled together to produce hybridized bonding and antibonding resonance modes. Previous studies using a condenser for illumination result in averaged signals over all excitation angles. By exciting an individual dimer obliquely at different angles, we demonstrate that these two new resonance modes are highly tunable and sensitive to the angle between the excitation polarization and the dimer orientation, which follows cos(2)phi dependence. Moreover, for dimer structures with various structure angles, the resonance wavelengths as well as the refractive index sensitivities were found independent of the structure angle. Calculated angle-resolved plasmonic properties are in good agreement with the measurements. The assembled nanostructures investigated here are important for fundamental researches as well as potential applications when they are used as building blocks in plasmon-based optical and optoelectronic devices

    Au/NaYF4:Yb,Er Binary Superparticles: Synthesis and Optical Properties

    No full text
    Colloidal superparticles (SPs) are nanoparticle (NP) assemblies in the form of colloidal particles. Assembling nanoscopic objects into mesoscopic or macroscopic composite architectures allows for the bottom-up fabrication of functional nanomaterials. In this study, a method for single-step self-assembly synthesis of Au/NaYF4:Yb,Er SPs was developed using oil-in-water (O/W) microemulsions to simultaneously encapsulate gold nanoparticles (AuNPs) and NaYF4:Yb,Er upconversion nanoparticles (UCNPs) via evaporation at room temperature. The synthesized Au/NaYF4:Yb,Er SPs possess good dispersibility and stability. When the number of AuNPs added is increased, the SPs exhibit decreased upconversion luminescence, which can be ascribed to the Forster resonance energy transfer (FRET) from the NaYF4:Yb,Er UCNPs to the AuNPs. Time-resolved measurements of the green emission further confirm the existence of a new decay route corresponding to the FRET process. Our research provides a facile and versatile strategy for the synthesis of novel multifunctional nanocomposites with tunable upconversion luminescence properties, which can be of great significance in biological applications

    2D Confined-Space Assisted Growth of Molecular-Level-Thick Polypyrrole Sheets with High Conductivity and Transparency

    No full text
    Herein, the use of a 2D soft template system composed of hundred-nanometer-thick water/ethanol mixed layers sandwiched by lamellar bilayer membranes of a self-assembled amphiphilic molecule to produce ultrathin polyprrole (PPy) with a uniform thickness as thin as 3.8 nm and with large dimensions (>2 mu m(2)) is presented. The obtained PPy nanosheets exhibit regioregularity with ordered chain alignment where the polymer chains in the nanosheets produced are well aligned with a clear interchain spacing as confirmed by small-angle X-ray scattering measurement. The molecular-level-thick PPy nanosheets exhibit extremely high conductivity up to 1330 S m(-1), thanks to the ordered alignment of polymer chains in the nanosheets, and a high transparency in both the visible region (transmittance >99%) and near-infrared region (transmittance >93%)

    Dispersive Plasmon Damping in Single Gold Nanorods by Platinum Adsorbates

    No full text
    Surface modifications of plasmonic nanoparticles with metal adsorbates are essential in applications such as plasmonic sensing, plasmon-enhanced photocatalysis, etc., where spectral broadening is usually observed. A single particle study is presented on plasmon damping by adsorption of platinum (Pt) clusters. Single particle dark-field spectroscopy is employed to measure exactly the same gold nanorod before and after the Pt adsorption. The Pt-induced plasmon damping in terms of linewidth increase is found dependent on the resonance wavelength of the measured nanorod, which is dispersive in nature. The measured dispersion generally matches the theoretical prediction, and it basically exhibits a gradual increase with decreasing resonance energy. This increase can be attributed to the fact that the nanorod as a better resonator is more susceptible to the Pt adsorption than the spherical particles. Moreover, simulated results based on discrete dipole approximation method further indicate that the damping is mainly contributed from the adsorbates on the ends of the nanorod and independent on the type of the metal adsorbed. Knowledge and insights gained in this study can be very important for the design and fabrication of plasmonic heterostructures as functional nanomaterials

    Bifacial DNA Origami-Directed Discrete, Three-Dimensional, Anisotropic Plasmonic Nanoarchitectures with Tailored Optical Chirality

    No full text
    Discrete three-dimensional (3D) plasmonic nanoarchitectures with well-defined spatial configuration and geometry have aroused increasing interest, as new optical properties may originate from plasmon resonance coupling within the nanoarchitectures. Although spherical building blocks have been successfully employed in constructing 3D plasmonic nanoarchitectures because their isotropic nature facilitates unoriented localization, it still remains challenging to assemble anisotropic building blocks into discrete and rationally tailored 3D plasmonic nanoarchitectures. Here we report the first example of discrete 3D anisotropic gold nanorod (AuNR) dimer nanoarchitectures formed using bifacial DNA origami as a template, in which the 3D spatial configuration is precisely tuned by rationally shifting the location of AuNRs on the origami template. A distinct plasmonic chiral response was experimentally observed from the discrete 3D AuNR dimer nanoarchitectures and appeared in a spatial-configuration-dependent manner. This study represents great progress in the fabrication of 3D plasmonic nanoarchitectures with tailored optical chirality

    DNA-Directed Gold Nanodimers with Tailored Ensemble Surface-Enhanced Raman Scattering Properties

    No full text
    Gold nanodimers (GNDs) are assembled with high uniformity as ideal surface-enhanced Raman scattering (SERS) substrates through DNA-directed self-assembly of gold nanoparticles. The interparticle distance within GNDs is precisely tailored on the order of a few nanometers with changing the molecule length of DNA bridge. The ensemble SERS activity of monodispersed GNDs is then rationally engineered by modifying the structural parameters of GNDs including the particle size and interparticle distance. Theoretical studies on the level of single GND evidence the particle size- and interparticle-distance-dependent SERS effects, consistent with the ensemble averaged measurements
    corecore