11 research outputs found

    Design and analysis of a beacon-less routing protocol for large volume content dissemination in vehicular ad hoc networks

    Get PDF
    Largevolumecontentdisseminationispursuedbythegrowingnumberofhighquality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well

    Interference-aware multi-hop path selection for device-to-device communications in a cellular interference environment

    Get PDF
    Device-to-Device (D2D) communications is widely seen as an efficient network capacity scaling technology. The co-existence of D2D with conventional cellular (CC) transmissions causes unwanted interference. Existing techniques have focused on improving the throughput of D2D communications by optimising the radio resource management and power allocation. However, very little is understood about the impact of the route selection of the users and how optimal routing can reduce interference and improve the overall network capacity. In fact, traditional wisdom indicates that minimising the number of hops or the total path distance is preferable. Yet, when interference is considered, we show that this is not the case. In this paper, we show that by understanding the location of the user, an interference-aware routing algorithm can be devised. We propose an adaptive Interference-Aware-Routing (IAR) algorithm, that on average achieves a 30% increase in hop distance, but can improve the overall network capacity by 50% whilst only incurring a minor 2% degradation to the CC capacity. The analysis framework and the results open up new avenues of research in location-dependent optimization in wireless systems, which is particularly important for increasingly dense and semantic-aware deployments

    Geometrical-Based Throughput Analysis of Device-to-Device Communications in a Sector-Partitioned Cell

    No full text

    A Geometrical-Based Throughput Bound Analysis for Device-to-Device Communications in Cellular Networks

    No full text

    Connectivity analysis for cooperative Vehicular Ad Hoc Networks under Nakagami fading channel

    No full text
    User behaviors like inter-vehicle cooperation have a significant impact on vehicular network connectivity. Intuitively, the network performance can be boosted by introducing cooperation. However, an increasing number of cooperative vehicles may result in increased interference and thus negatively affect the system performance. In this letter, we present an analytical framework to study the impact of the cooperative vehicle ratio on connectivity probability under Nakagami fading channel for both cases of independently non-identically and identically distributed interference. The lower bound of the optimal cooperative ratio is derived to explicitly reveal its relation with system parameters when interference are identically distributed. Numerical results are supplemented by simulations to demonstrate the accuracy of the analytical framework and provide useful guidelines for estimating connectivity performance in the network design for scheduling policy in vehicular networks
    corecore