1,032 research outputs found

    Carbon nanotube template-assisted synthesis of zinc ferrite nanochains

    Get PDF
    We synthesized zinc ferrite nanochains assembled from nanoparticles using a carbon nanotubes (CNTs) template method The resulting nanochains were systematically characterized with respect to crystal structure morphology elemental composition magnetic properties and specific surface area by X-ray diffraction (XRD) transmission electron microscopy (TEM) field emission scanning electron microscopy (FESEM) X-ray photoelectron spectroscopy (XPS) superconducting quantum interference device (SQUID) magnetometry and the N(2) adsorption method The morphology results showed that the zinc ferrite particles with diameters of 10-20 rim were structurally linked to form nanochains The magnetic property investigation indicated that the zinc ferrite nanochains exhibited ferromagnetic behavior and possessed a saturation magnetization of 45 4 emu g(-1) at 300K We addressed the growth mechanism by analyzing the experimental conditions and characterization results This method may be applicable to synthesizing other metal oxide nanochains as wellArticleMATERIALS CHEMISTRY AND PHYSICS. 124(2-3):1029-1033 (2010)journal articl

    Mild hydrothermal treatment to prepare highly dispersed multi-walled carbon nanotubes

    Get PDF
    Multi-walled carbon nanotubes (MWCNTs) with improved dispersion property have been prepared by a mild and fast hydrothermal treatment. The hydrothermal process avoids using harsh oxidants and organic solvents, which is environmental friendly and greatly decreases the damage to intrinsic structure of MWCNTs. The modified MWCNTs were highly soluble in polar solvents such as water, ethanol and dimethylformamide. Morphological observation by TEM indicated that the diameter and inherent structure were well reserved in modified MWCNTs. X-ray photoelectron spectroscopy and Raman spectroscopy were used to quantify functional groups created on the MWCNT surface, and to determine rational parameters of hydrothermal process.ArticleAPPLIED SURFACE SCIENCE. 257(6):1845-1849 (2011)journal articl

    Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties

    Get PDF
    In this paper, a facile synthesis process is proposed to prepare multiwalled carbon nanotubes/magnetite (MWCNTs/Fe3O4) hybrids. The process involves two steps: (1) water-soluble CNTs are synthesized by one-pot modi. cation using potassium persulfate (KPS) as oxidant. (2) Fe3O4 is assembled along the treated CNTs by employing a facile hydrothermal process with the presence of hydrazine hydrate as the mineralizer. The treated CNTs can be easily dispersed in aqueous solvent. Moreover, X-ray photoelectron spectroscopy (XPS) analysis reveals that several functional groups such as potassium carboxylate (-COOK), carbonyl (-C=O) and hydroxyl (-C-OH) groups are formed on the nanotube surfaces. The MWCNTs/Fe3O4 hybrids are characterized with respect to crystal structure, morphology, element composition and magnetic property by X-ray diffraction (XRD), transmission electron microscopy (TEM), XPS and superconducting quantum interference device (SQUID) magnetometer. XRD and TEM results show that the Fe3O4 nanoparticles with diameter in the range of 20-60 nm were firmly assembled on the nanotube surface. The magnetic property investigation indicated that the CNTs/Fe3O4 hybrids exhibit a ferromagnetic behavior and possess a saturation magnetization of 32.2 emu/g. Further investigation indicates that the size of assembled Fe3O4 nanoparticles can be turned by varying experiment factors. Moreover, a probable growth mechanism for the preparation of CNTs/Fe3O4 hybrids was discussed.ArticleAPPLIED SURFACE SCIENCE. 255(20):8676-8681 (2009)journal articl

    One-step preparation of water-soluble single-walled carbon nanotubes

    Get PDF
    A novel one-step process using potassium persulfate (KPS) as oxidant is proposed in this paper to prepare water-soluble single-walled carbon nanotubes (SWNTs). The process without the need for organic solvents and acids is a low-cost, eco-friendly, facile method. Morphology observation by atomic force microscopy (AFM) indicates that the KPS-treated SWNTs were effectively debundled without obvious shortening in their length. The functional groups and thermal stability of the treated SWNTs were analyzed by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). XPS results show that several functional groups such as potassium carboxylate (-COOK), carbonyl (-C=O) and hydroxyl (-C-OH) groups were formed on the surfaces of the SWNTs, while the TGA results reveal that the quantity of the functional groups can reach to approximately 20%.ArticleAPPLIED SURFACE SCIENCE. 255(15):7095-7099 (2009)journal articl

    Synthesis and Mechanical Properties of Polybenzimidazole Nanocomposites Reinforced by Vapor Grown Carbon Nanofibers

    Get PDF
    This is a preprint of an article published in Polymer Composites. 31(3):491-496 (2010) JOHN WILEY & SONS INC URL: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1548-0569Polybenzimidazole (PBI) nanocomposites containing 0.5-5 wt% vapor grown carbon nanofibers (VGNFs) were successfully synthesized by solvent evaporation method. Fracture morphology examination confirmed the uniform dispersion of VGNFs in the matrix. The mechanical properties of neat PBI and the nanocomposites were systematically measured by tensile test, dynamic mechanical analysis (DMA), hardness measurement, and friction test. Tensile tests revealed that Young's modulus increased by about 43.7% at 2 wt% VGNFs loading, and further modulus growth was observed at higher filler loadings. DMA studies showed that the nanocomposites have higher storage modulus than neat PBI in the temperature range of 30-350 degrees C, holding storage modulus larger than 1.54 GPa below 300 degrees C. Outstanding improvement of hardness was achieved for PBI upon incorporating 2 wt% of VGNFs. The results of friction test showed that coefficient of friction of PBI nanocomposites decreased with VGNFs content compared with neat PBI.ArticlePOLYMER COMPOSITES. 31(3):491-496 (2010)journal articl

    Fabrication of flower-shaped Bi(2)O(3) superstructure by a facile template-free process

    Get PDF
    A novel flower-shaped Bi(2)O(3) superstructure has been successfully synthesized by calcination of the precursor, which was prepared via a citric acid assisted hydrothermal process. The precursor and Bi(2)O(3) were characterized with respect to morphology, crystal structure and elemental chemical state by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It was shown that both the precursor and Bi(2)O(3) flower-shaped superstructure were constructed of numerous nanosheets while the nanosheets consisted of a great deal of nanoparticles. Furthermore, key factors for the formation of the superstructures have been proposed; a mechanism for the growth of the superstructure has been presented based on the FESEM investigation of different growth stages.ArticleAPPLIED SURFACE SCIENCE. 257(15):6577-6582 (2011)journal articl

    Effects of polymer additives in the bulk of turbulent thermal convection

    Full text link
    We present experimental evidence that a minute amount of polymer additives can significantly enhance heat transport in the bulk region of turbulent thermal convection. The effects of polymer additives are found to be the \textit{suppression} of turbulent background fluctuations that give rise to incoherent heat fluxes that make no net contribution to heat transport, and at the same time to \textit{increase} the coherency of temperature and velocity fields. The suppression of small-scale turbulent fluctuations leads to more coherent thermal plumes that result in the heat transport enhancement. The fact that polymer additives can increase the coherency of thermal plumes is supported by the measurements of a number of local quantities, such as the extracted plume amplitude and width, the velocity autocorrelation functions and the velocity-temperature cross-correlation coefficient. The results from local measurements also suggest the existence of a threshold value for the polymer concentration, only above which can significant modification of the plume coherent properties and enhancement of the local heat flux be observed. Estimation of the plume emission rate suggests that the second effect of polymer additives is to stabilize the thermal boundary layers.Comment: 8 figures, 11 page

    Synthesis of hollow poly(aniline-co-pyrrole)-Fe3O4 composite nanospheres and their microwave absorption behavior

    Get PDF
    Hollow poly(aniline-co-pyrrole)-Fe3O4 (HPAP-Fe3O4) nanospheres with significant electromagnetic properties were successfully prepared via the oxidative polymerization of a mixture of aniline and pyrrole in the presence of a magnetic fluid, using a non-ionic surfactant as a template. The products were characterized by field emission scanning electron microscopy, transmission electron microscopy. Fourier transform infrared spectroscopy, X-ray powder diffraction, thermogravimetric analysis and Xray photoelectron spectroscopy. The electromagnetic (EM) and microwave absorbing properties of the nanocomposites were also investigated. The HPAP-Fe3O4 nanospheres exhibit superparamagnetic properties, and the conductivity increases with Fe3O4 content. The reflection loss evaluation based on the absorbing wall theory at 2 mm thickness shows that the reflection loss is reinforced in the frequency range of 0.5-10 GHz by the presence of Fe3O4 nanoparticles, and the frequency of minimum reflection loss shifts to a higher value with increasing Fe3O4 content. HPAP-Fe-06 exhibits the best microwave absorbing property between 0.5 and 10 GHz.ArticleSYNTHETIC METALS. 162(3-4):337-343 (2012)journal articl
    • …
    corecore