131 research outputs found

    Seed Germination Indicates Adaptive Transgenerational Plasticity in a Submerged Macrophyte

    Get PDF
    Adaptive transgenerational plasticity is an important evolutionary strategy in plants. We investigated the resource allocation strategy in sexual reproduction and performed an in situ seed germination experiment of Potamogeton maackianus to reveal their responses to different water depths. Later, we discussed the biased adaptability to the maternal habitat in this species. We found a positive correlation between sexual and asexual reproduction in water depths from 1.0 m to 3.0 m, such a correlation failed to occur in 4.0 m water depth. These results indicate that the trade-off between sexual and asexual reproduction should only be expected in a stressful habitat, where resource acquisition is limited. For trade-off between quantity and quality of sexual units in different water depths, P. maackianus tends to produce more but lower quality sexual reproductive units in shallow water, and fewer but higher quality sexual units are found in deep water. The total germination percentage of seeds of P. maackianus was relatively poor, less than 46.65% in all of the treatments. The maximum germination percentage of seeds from 1.0 m, 2.0 m, 3.0 m, and 4.0 m water depths are 14.4%, 17.75%, 25.51%, and 46.65%, respectively. Seeds with higher germination percentage were from deeper water depths. The most interesting result was that the maximum final germination percentage occurred only when treatment water depth was the same as collection water depth. Our result showed that the variations in germination characters of the studied species appear to be based partly on the effects of maternal environmental factors. Our findings proved the adaptive transgenerational plasticity in P. maackianus, which will play an important role in evolutionary response to the selection of water depths

    Sodium glucose co-transporter 2 (SGLT2) inhibition via dapagliflozin improves diabetic kidney disease (DKD) over time associatied with increasing effect on the gut microbiota in db/db mice

    Get PDF
    BackgroundThe intestinal microbiota disorder gradually aggravates during the progression of diabetes. Dapagliflozin (DAPA) can improve diabetes and diabetic kidney disease(DKD). However, whether the gut microbiota plays a role in the protection of DAPA for DKD remains unclear.MethodsTo investigate the effects of DAPA on DKD and gut microbiota composition during disease progression, in our study, we performed 16S rRNA gene sequencing on fecal samples from db/m mice (control group), db/db mice (DKD model group), and those treated with DAPA (treat group) at three timepoints of 14weeks\18weeks\22weeks.ResultsWe found that DAPA remarkably prevented weight loss and lowered fasting blood glucose in db/db mice during disease progression, eventually delaying the progression of DKD. Intriguingly, the study strongly suggested that there is gradually aggravated dysbacteriosis and increased bile acid during the development of DKD. More importantly, comparisons of relative abundance at the phylum level and partial least squares-discriminant analysis (PLS-DA) plots roughly reflected that the effect of DAPA on modulating the flora of db/db mice increased with time. Specifically, the relative abundance of the dominant Firmicutes and Bacteroidetes was not meaningfully changed among groups at 14 weeks as previous studies described. Interestingly, they were gradually altered in the treat group compared to the model group with a more protracted intervention of 18 weeks and 22 weeks. Furthermore, the decrease of Lactobacillus and the increase of norank_f:Muribaculaceae could account for the differences at the phylum level observed between the treat group and the model group at 18 weeks and 22 weeks.ConclusionWe firstly found that the protective effect of DAPA on DKD may be related to the dynamic improvement of the gut microbiota over time, possibly associated with the impact of DAPA on the bile acid pool and its antioxidation effect

    Clinical Outcome of Twice-Weekly Hemodialysis Patients with Long-Term Dialysis Vintage

    Get PDF
    Background/Aims: Twice-weekly hemodialysis(HD) is prevalent in the developing countries, scarce data are available for this treatment in patients with long-term dialysis vintage. Methods: 106 patients with more than 5 years HD vintage undergoing twice-weekly HD or thrice-weekly HD in a hemodialysis center in Shanghai between December 1, 2013 and December 31, 2013 were enrolled into the cohort study with 3 years follow-up. Kaplan–Meier analysis and Cox proportional hazards models were used to compare patient survival between the two groups. Subgroup analysis of 62 patients more than 10 years HD vintage was also performed according to their different dialysis frequency. Results: Compared with patients on thrice-weekly HD, twice-weekly HD patients had significantly longer HD session time and higher single-pool Kt/V (spKt/V) (session time, 4.59±0.45 vs 4.14±0.31 hours/per session, P< 0.001; spKt/V, 2.12±0.31 vs 1.83±0.30, P< 0.001). Kaplan–Meier survival analysis indicated that the two groups had similar survival (P=0.983). Multivariate Cox regression analysis showed that age and time-dependent serum albumin were predictors of patient mortality. Subgroup analysis of 62 patients more than 10 years HD vintage also indicated that the two groups had similar survival. During the follow-up, 4 patients dropped out from the twice-weekly HD group and transferred to thrice-weekly HD. Conclusion: The similar survival between twice-weekly HD and thrice-weekly HD in patients with long-term dialysis vintage is likely relating to patient selection, individualized treatment for dialysis patients based on clinical features and socioeconomic factors remains a tough task for the clinicians

    Association between sarcopenic obesity and mortality in patients on peritoneal dialysis: a prospective cohort study

    Get PDF
    BackgroundWhether sarcopenic obesity had unfavorable effect on survival of peritoneal dialysis (PD) patients is unknown. We aimed to investigate the association between sarcopenic obesity and survival in PD patients.MethodsThis was a prospective observational study. Eligible PD patients from November 2016 to December 2017 were enrolled and followed until August 31, 2023. Sarcopenia was defined following the recommendations of the Asian Working Group for Sarcopenia (AWGS) as low appendicular skeletal muscle mass index (ASMI) and handgrip strength (HGS). Obesity was defined using the percentage of body fat (PBF). Survival analysis was conducted using the Kaplan–Meier and log-rank test. The Cox regression and the cumulative incidence competing risk (CICR) analyzes were used to investigate the association between sarcopenic obesity and all-cause mortality.ResultsA total of 223 patients were enrolled with 133 (59.6%) males, a median age of 57.5 (44.6, 65.7) years, a median dialysis vintage of 20.3 (6.4, 57.7) months and 48 (21.5%) who had comorbid diabetes mellitus. Among them, 46 (20.6%) patients were sarcopenic, and 25 (11.2%) patients were diagnosed with sarcopenic obesity. After followed up for 51.6 (25.6, 73.9) months, the Kaplan–Meier curve showed the sarcopenic obesity (log-rank = 13.527, p < 0.001) group had significant lower survival rate compared to the nonsarcopenic non-obesity group. For multivariate analysis, the CICR method showed patients with sarcopenic obesity had significantly higher mortality rate (HR: 2.190, 95% CI: 1.011–4.743, p = 0.047) compared to those with nonsarcopenic non-obesity.ConclusionSarcopenia is not uncommon in PD patients, with a considerable proportion having sarcopenic obesity. There is a significant association between sarcopenic obesity and an increased risk of mortality in PD patients

    An observational study on the effect of seasonal variation on peritoneal dialysis patients

    Get PDF
    Background: Seasonal variation has an impact on plants, wild animals, and also human beings. Data have shown seasonal variation has a significant impact on patients’ fluid status, biochemistry results, and outcomes in hemodialysis populations. The relevant data on peritoneal dialysis is scant.Methods: This was a cross sectional study. All patients followed up in our center had a peritoneal equilibration test and PD adequacy test every 6 months. All the peritoneal equilibration test and PD adequacy test data were collected during December 2019 to November 2020. The monthly delivery information of the whole center was collected from 2015 to 2019.Results: There were 366 patients and 604 sets of peritoneal equilibration test and PD adequacy test results in the study. Plasma albumin and phosphate levels were higher in summer. The monthly average outdoor temperature was positively correlated with plasma albumin. There was no seasonal difference in peritoneal dialysis ultrafiltration or urine volume. The percentage of low glucose concentration (1.5%) usage was higher in summer and lower in winter.Conclusion: Plasma albumin and phosphate levels were higher in summer in PD patients. Weaker glucose peritoneal dialysis dialysate was more widely used in summer. Understanding the seasonal variation of peritoneal dialysis is helpful in individualized treatment

    Littoral Slope, Water Depth and Alternative Response Strategies to Light Attenuation Shape the Distribution of Submerged Macrophytes in a Mesotrophic Lake

    Get PDF
    Light is a major limiting resource in aquatic ecosystems and numerous studies have investigated the response of submerged macrophytes to low light conditions. However, few studies have tested whether different light response strategies can also have consequences for macrophyte distribution along different littoral slopes in lakes, which are known to affect macrophyte biomass due to differences in drag forces and sediment characteristic. In this study, we tested (1) whether two macrophyte species of different growth forms (canopy-forming: Potamogeton maackianus, rosette-type: Vallisneria natans) differ in their response strategies to low light conditions and (2) how these responses influence their distribution along different basin slopes in the mesotrophic Lake Erhai, China. We hypothesized that the canopy-forming species responds to low light conditions at deeper sites by stem elongation while the rosette-type species increases its shoot chlorophyll content. As a consequence, P. maackianus should have a higher susceptibility to drag forces and thus prevail at sites with lower slopes. Sites with higher slopes should offer a niche for rosette-type species like V. natans that can better withstand drag forces. We surveyed the distribution and abundance of the two macrophyte species at 527 sampling points along 97 transects in Lake Erhai and measured their height, leaf and stem/rhizome biomass, and leaf chlorophyll a content at different water depths. Our results confirmed stem elongation as a strategy to low light conditions by the canopy-forming species P. maackianus, while V. natans produced more chlorophyll a per shoot biomass at deeper sites to tolerate shading. As hypothesized, these alternative response strategies to low light conditions resulted in a trade-off regarding the plants ability to grow at different basin slopes. P. maackianus was dominant at sites with low-moderate slope (0–4%) and low-moderate water depth (2–4 m), while sites with high basin slope (4–7%) combined with moderate-high water depth (3–5 m) were dominantly colonized by V. natans. The latter habitat thus represents a potential refuge for rosette-type macrophyte species that are often outcompeted when shading increases during eutrophication

    Seasonal variation and nutrient jointly drive the community structure of macrophytes in lakes with different trophic states

    Get PDF
    IntroductionMacrophytes are essential for maintaining the health of shallow lake ecosystems, however, the driving and responsive relationship between ecological factors (such as seasonal changes and nutrition, etc.) and plant communities is not yet clear.MethodsIn this study, we conducted seasonal surveys of macrophyte community composition in lakes with different nutrient states, aiming to understand the incidence relation between macrophyte community diversity, seasonal changes and environmental factors.ResultsAccording to the classification criteria of comprehensive nutritional index, there were significant differences in the trophic status of the three lakes. Among them, the Xihu Lake has reached mild eutrophication with a TLI value of 56.33, both Cibi Lake and Haixihai Lake are mesotrophic with TLI value of 36.03 and 33.48, respectively. The results of diversity analysis showed a significant negative correlation between α-diversity (include Species richness, Shannon-Wiener index, Simpson index and Pielou index) and lake nutrient status. Among them, Xihu Lake showed the lowest α-diversity in all seasons, Haixihai Lake exhibited the middle α-diversity, Cibi Lake indicated the highest α-diversity. Non-metric multidimensional ordination showed that there were obvious spatial structures differences among the macrophyte communities in the three lakes. Macrophyte community composition in the three lakes was more similar in summer and autumn, but there was a wider gap in spring and winter. The redundancy analysis indicated distinct differences between diversity index and ecological factors, the eigenvalues of Axis 1 and Axis 2 being, respectively, 36.13% and 8.15%. Environmental factors could explain 44.8% of the total variation in macrophyte communities structure. Among these, nitrogen, phosphorus, water transparency and water temperature contributed 50.2%, 3.5%, 3.8% and 27.5%, respectively.ConclusionsIn summary, the community structure of macrophytes in plateau shallow lakes is co-regulated by seasons and nutrients

    Assessment effects of cage culture on nitrogen and phosphorus dynamics in relation to fallowing in a shallow lake in China

    Get PDF
    Nitrogen and phosphorus dynamics in relation to fallowing in a fish cage farm was investigated in a shallow lake in China. Four sampling sites were set: beneath the cages, at the cage sides, and 50 and 100 m east of the cage farm. Total nitrogen (TN) and total phosphorus (TP) in lake water and sediment were analyzed during a 2-year rearing cycle. The cage culture had a fish yield of 16.3-39.2 tonnes in the study period. Based on the mass balance equation, 1533-3084 kg TN and 339-697 kg TP were contributed to the lake environment. Nitrogen and phosphorous concentrations showed greater increase in the first culture period than in the second rearing cycle. No obvious changes were found at the sampling sites 50 and 100 m east of the cages during the study periods. Main impacts were found close to the cages (beneath the cages and at the cage side); the sampling points at the cage side showed relatively high TN and TP sedimentation. After 3 months of fallowing, water TN and TP decreased significantly but the sediment TN and TP contents remained high. Therefore, recovery seems to happen during fallowing but attention should be paid to whether the culture continues to operate in the future.Nitrogen and phosphorus dynamics in relation to fallowing in a fish cage farm was investigated in a shallow lake in China. Four sampling sites were set: beneath the cages, at the cage sides, and 50 and 100 m east of the cage farm. Total nitrogen (TN) and total phosphorus (TP) in lake water and sediment were analyzed during a 2-year rearing cycle. The cage culture had a fish yield of 16.3-39.2 tonnes in the study period. Based on the mass balance equation, 1533-3084 kg TN and 339-697 kg TP were contributed to the lake environment. Nitrogen and phosphorous concentrations showed greater increase in the first culture period than in the second rearing cycle. No obvious changes were found at the sampling sites 50 and 100 m east of the cages during the study periods. Main impacts were found close to the cages (beneath the cages and at the cage side); the sampling points at the cage side showed relatively high TN and TP sedimentation. After 3 months of fallowing, water TN and TP decreased significantly but the sediment TN and TP contents remained high. Therefore, recovery seems to happen during fallowing but attention should be paid to whether the culture continues to operate in the future

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • …
    corecore