4,141 research outputs found

    Skeleton-Based Gesture Recognition With Learnable Paths and Signature Features

    Get PDF
    For the skeleton-based gesture recognition, graph convolutional networks (GCNs) have achieved remarkable performance since the human skeleton is a natural graph. However, the biological structure might not be the crucial one for motion analysis. Also, spatial differential information like joint distance and angle between bones may be overlooked during the graph convolution. In this paper, we focus on obtaining meaningful joint groups and extracting their discriminative features by the path signature (PS) theory. Firstly, to characterize the constraints and dependencies of various joints, we propose three types of paths, i.e., spatial, temporal, and learnable path. Especially, a learnable path generation mechanism can group joints together that are not directly connected or far away, according to their kinematic characteristic. Secondly, to obtain informative and compact features, a deep integration of PS with few parameters are introduced. All the computational process is packed into two modules, i.e., spatial-temporal path signature module (ST-PSM) and learnable path signature module (L-PSM) for the convenience of utilization. They are plug-and-play modules available for any neural network like CNNs and GCNs to enhance the feature extraction ability. Extensive experiments have conducted on three mainstream datasets (ChaLearn 2013, ChaLearn 2016, and AUTSL). We achieved the state-of-the-art results with simpler framework and much smaller model size. By inserting our two modules into the several GCN-based networks, we can observe clear improvements demonstrating the great effectiveness of our proposed method

    Topological magnons in one-dimensional ferromagnetic Su-Schrieffer-Heeger model with anisotropic interaction

    Full text link
    Topological magnons in a one-dimensional (1D) ferromagnetic (FM) Su-Schrieffer-Heeger (SSH) model with anisotropic exchange interactions are investigated. Apart from the inter-cellular isotropic Heisenberg interaction, the intercellular anisotropic exchange interactions, i.e. Dzyaloshinskii-Moriya interaction (DMI) and pseudo-dipolar interaction (PDI), also can induce the emergence of the non-trivial phase with two degenerate in-gap edge states separately localized at the two ends of the 1D chain, while the intracellular interactions instead unfavors the topological phase. The interplay among them has synergistic effects on the topological phase transition, very different from that in the two-dimensional (2D) ferromagnet. These results demonstrate that the 1D magnons possess rich topological phase diagrams distinctly different from the electronic version of the SSH model and even the 2D magnons. Due to the lower dimensional structural characteristics of this 1D topological magnonic system, the magnonic crystals can be constructed from bottom to top, which has important potential applications in the design of novel magnonic devices.Comment: 22 pages, 11 figure

    Quality of reporting of systematic reviews published in “evidence-based” Chinese journals

    Get PDF
    BACKGROUND: The number of systematic reviews (SRs)/meta-analyses (MAs) has increased dramatically in China over the past decades. However, evaluation of quality of reporting of systematic reviews published has not been undertaken. The objective of this study is to evaluate the quality of reporting of SRs/MAs assessing efficacy and/or harms of clinical interventions published in “evidence-based” Chinese journals. METHODS: Web-based database searches were conducted for the Chinese Journal of Evidence-based Medicine, the Journal of Evidence-Based Medicine, the Chinese Journal of Evidence Based Pediatrics, and the Chinese Journal of Evidence-Based Cardiovascular Medicine. SRs/MAs assessing efficacy and/or harms of clinical interventions were included. The cut-off was December 31st 2011. The PRISMA statement was applied to assess the quality of reporting. Each item was assessed as follows: ‘Yes’ for total compliance, scored ‘1’; ‘partial’ for partial compliance, scored ‘0.5’; and ‘No’ for non-compliance, scored ‘0’. The review was considered to have major flaws if it received a total score of ≤15.0, minor flaws if it received a total score of 15.5 to 21.0, and minimal flaws if it received a total score 21.5 to 27.0. Odds ratios were used for binary variables, and the mean difference was used for continuous variables. Analyses were performed using RevMan 5.0 software. RESULTS: Overall, 487 SRs/MAs were identified and assessed. The included reviews had medium quality with minor flaws based on PRISMA total scores (range: 8.5–26.0; mean: 19.6 ± 3.3). The stratified analysis showed that SRs/MAs with more than 3 authors, from a university, hospital + university cooperation, multiple affiliations (≥2), and funding have significantly higher quality of reporting of SRs/MAs; 58% of the included reviews were considered to have minor flaws (total score of 15.6 to 21.0). Only 9.6% of reviews were considered to have major flaws. Specific areas needing improvement in reporting include the abstract, protocol and registration, and characteristics of the search. CONCLUSIONS: The reporting of SRs published in “evidence-based” Chinese journals is poor and needs to be improved in order for reviews to be useful. SR authors should use the PRISMA checklist to ensure complete and accurate accounts of their SRs

    Dynamic resonance fluorescence in solid-state cavity quantum electrodynamics

    Full text link
    The coherent interaction between a two-level system and electromagnetic fields serves as a foundation for fundamental quantum physics and modern photonic quantum technology. A profound example is resonance fluorescence, where the non-classical photon emission appears in the form of a Mollow-triplet when a two-level system is continuously driven by a resonant laser. Pushing resonance fluorescence from a static to dynamic regime by using short optical pulses generates on-demand emissions of highly coherent single photons. Further increasing the driving strength in the dynamical regime enables the pursuit of exotic non-classical light emission in photon number superposition, photon number entanglement, and photon bundle states. However, the long-sought-after spectrum beyond the Mollow-triplet, a characteristic of dynamic resonance fluorescence under strong driving strength, has not been observed yet. Here we report the direct observation and systematic investigations of dynamic resonance fluorescence spectra beyond the Mollow-triplet in a solid-state cavity quantum electrodynamic system. The dynamic resonance fluorescence spectra with up to five pairs of side peaks, excitation detuning induced spectral asymmetry, and cavity filtering effect are observed and quantitatively modeled by a full quantum model with phonon scattering included. Time-resolved measurements further reveal that the multiple side peaks originate from interference of the emission associated with different temporal positions of the excitation pulses. Our work facilitates the generation of a variety of exotic quantum states of light with dynamic driving of two-level systems.Comment: Manuscript submitted on 19th May 202

    Gut-brain axis: Mechanisms and potential therapeutic strategies for ischemic stroke through immune functions

    Get PDF
    After an ischemic stroke (IS) occurs, immune cells begin traveling to the brain and immune system from the gut and gastrointestinal tract, where most of them typically reside. Because the majority of the body’s macrophages and more than 70% of the total immune cell pool are typically found within the gut and gastrointestinal tract, inflammation and immune responses in the brain and immune organs require the mobilization of a large number of immune cells. The bidirectional communication pathway between the brain and gut is often referred to as the gut-brain axis. IS usually leads to intestinal motility disorders, dysbiosis of intestinal microbiota, and a leaky gut, which are often associated with poor prognosis in patients with IS. In recent years, several studies have suggested that intestinal inflammation and immune responses play key roles in the development of IS, and thus may become potential therapeutic targets that can drive new therapeutic strategies. However, research on gut inflammation and immune responses after stroke remains in its infancy. A better understanding of gut inflammation and immune responses after stroke may be important for developing effective therapies. This review discusses the immune-related mechanisms of the gut-brain axis after IS and compiles potential therapeutic targets to provide new ideas and strategies for the future effective treatment of IS

    Review of Evidence Suggesting That the Fascia Network Could Be the Anatomical Basis for Acupoints and Meridians in the Human Body

    Get PDF
    The anatomical basis for the concept of meridians in traditional Chinese medicine (TCM) has not been resolved. This paper reviews the evidence supporting a relationship between acupuncture points/meridians and fascia. The reviewed evidence supports the view that the human body's fascia network may be the physical substrate represented by the meridians of TCM. Specifically, this hypothesis is supported by anatomical observations of body scan data demonstrating that the fascia network resembles the theoretical meridian system in salient ways, as well as physiological, histological, and clinical observations. This view represents a theoretical basis and means for applying modern biomedical research to examining TCM principles and therapies, and it favors a holistic approach to diagnosis and treatment
    corecore