1,019 research outputs found

    Life Cycle Assessment of Large-scale Compressed Bio-natural Gas Production in China: A Case Study on Manure Co-digestion with Corn Stover

    Get PDF
    Compressed bio-natural gas (CBG) production from large-scale systems has been recognized as promising because of the abundance of manure and crop residue feedstocks and its environmental friendliness. This study is a life cycle assessment using the local database of an operating large-scale CBG system of manure co-digestion with corn stover in China and eBalance software. The results showed that the system’s Primary Energy Input to Output (PEIO) ratio was 20%. Its anaerobic digestion process was the main contributor to energy consumption, accounting for 76%. Among the six environmental impacts investigated in this study, the global warming potential (GWP) was the major environmental impact, and the digestate effluent management process was the main contributor to the GWP, accounting for 60%. The mitigation potential of the system, compared with reference case for GWP, was 3.19 kg CO2-eq for 1 m3 CBG production. In the future, the GWP mitigation could be 479 × 106 metric tons CO2-eq with 150 × 109 m3 yr−1 CBG production from the entire China. This study provides a reference on large-scale CBG production system for establishing a localized life cycle assessment inventory database in China

    Computational Fluid Dynamics Modeling of a Broiler House Microclimate in Summer and Winter

    Get PDF
    Appropriate microclimate conditions in broiler housing are critical for optimizing poultry production and ensuring the health and welfare of the birds. In this study, spatial variabilities of the microclimate in summer and winter seasons in a mechanically ventilated broiler house were modeled using the computational fluid dynamics (CFD) technique. Field measurements of temperature, relative humidity, and airspeeds were conducted in the house to compare the simulated results. The study identified two problems of high temperature in summer, which could result in bird heat stress and stagnant zones in winter, and simulated possible alternative solutions. In summer, if an evaporative cooling pad system was used, a decrease in temperature of approximately 3 °C could be achieved when the mean air temperature rose above 25 °C in the house. In winter, adding four 500-mm circulation fans of 20-m spacing inside the house could eliminate the accumulation of hot and humid air in the stagnant zones in the house. This study demonstrated that CFD is a valuable tool for adequate heating, ventilation, and air conditioning system design in poultry buildings

    Improving Ammonia Emission Modeling and Inventories by Data Mining and Intelligent Interpretation of the National Air Emission Monitoring Study Database

    Get PDF
    Ammonia emission is one of the greatest environmental concerns in sustainable agriculture development. Several limitations and fundamental problems associated with the current agricultural ammonia emission modeling and emission inventories have been identified. They were associated with a significant disconnection between field monitoring data and knowledge about the data. Comprehensive field measurement datasets have not been fully exploited for scientific research and emission regulations. This situation can be considerably improved if the currently available data are better interpreted and the new knowledge is applied to update ammonia emission modeling techniques. The world\u27s largest agricultural air quality monitoring database with more than 2.4 billion data points has recently been created by the United States\u27 National Air Emission Monitoring Study. New approaches of data mining and intelligent interpretation of the database are planned to uncover new knowledge and to answer a series of questions that have been raised. The expected results of this new research idea include enhanced fundamental understanding of ammonia emissions from animal agriculture and improved accuracy and scope in regional and national ammonia emission inventories

    Effectiveness and characteristics of a new technology to reduce ammonia, carbon dioxide, and particulate matter pollution in poultry production with artificial turf floor

    Get PDF
    Ammonia (NH3), carbon dioxide (CO2), and particulate matter (PM) are three major aerial pollutants that threaten the health of workers and animals in poultry production. An experiment was conducted in four laying hen rooms, with 735 to 740 hens per room, to study a new technology using artificial turf (AstroTurf®) floor for mitigation of the three pollutants. Air was sampled at three locations in each room to measure ammonia and carbon dioxide concentrations with an Innova 1412 multi-gas monitor for 83 days. Particulate matter was measured at one location at bird height in each room using a Dylos DC1700 Air Quality Monitor for 35 days. Ventilation rates in all rooms were monitored with RM Young anemometers. Compared with two wood shavings rooms, the two artificial turf rooms significantly (p\u3c0.01) reduced concentrations of ammonia by 51.0%, carbon dioxide by 13.5%, small particles by 77.5%, and large particles by 83.6%. They also significantly (p\u3c0.01) reduced ammonia and carbon dioxide emission rates by 38.4% and 8.3%, respectively. The artificial turf rooms’ lower ammonia concentrations and emissions were a result of lower manure pH. The artificial turf rooms also retained more nitrogen in manure. Lower carbon dioxide concentrations and emissions were partially attributed to less carbon dioxide released from manure. Lower PM concentrations were related to reduced PM sources on floor surfaces. Artificial turf rooms had smaller in-room ammonia and carbon dioxide concentration gradients. Artificial turf is a promising new technology to improve indoor air quality in and reduce pollutant emissions from poultry production

    Ammonia Emissions from a Commercial Poultry Manure Composting Facility

    Get PDF
    Composting is an effective waste management technology for converting animal wastes into valuable organic fertilizer. However, air emissions from composting, especially ammonia (NH3) emission, reduces the nitrogen fertilizer value of the compost and greatly impacts the environment. Ammonia emission from commercial composting facilities is not well understood and is limiting mitigation or recovery of NH3 emission from these facilities. The goal of this study was to determine the NH3 emission from a poultry manure compost facility and its temporal variations for development of mitigation strategies. A commercial composting facility was chosen for this study. Manure was supplied from four adjacent manure-belt layer barns. The composting building was tunnel ventilated by four 122-cm exhaust fans. Ammonia concentration at the building inlet and the fan exhausts was monitored quasi-continuously for one month in each of the four seasons using a MSA photoacoustic NH3 analyzer. Air temperature and humidity at the exhausts were monitored using a HOBO temperature and RH sensor and data logger. The exhaust fans were calibrated using FANS units to quantify the ventilation rate of the building. Ammonia emission rate was calculated according to the NH3 concentrations and building ventilation rate. The daily average NH3 concentrations at the exhaust of the compost house varied from 123 ppm in spring to 167 ppm in summer. The daily average NH3 emission rates of the compost facility varied from 231 kg/d in spring to 315 kg/d in summer. Strong diurnal variations exist in spring and summer seasons. Daytime NH3 emission is significantly higher than that of nighttime. The annual NH3 emission rate of the composting facility was estimated as 96,143 kg. The emission factors were calculated as 13±1.3 kg/ton · d and 0.32 ±0.14 g/d · hen. The results of this study will contribute to the development of NH3 emission mitigation technologies and management practices

    Effect of cooling pad installation on indoor airflow distribution in a tunnel-ventilated laying-hen house

    Get PDF
    Extra cooling pads on the sidewalls are needed for larger poultry houses using tunnel ventilation system. Preliminary study showed that the airflow velocity going through different aisles varies greatly when the extra pads are installed at the end of sidewalls, making a “[”-shape air inlet. Combined with field tests, the CFD (computational fluid dynamics) technology was used to study the uniformity of airflow distribution in a tunnel-ventilated laying-hen house. The air distribution was first monitored in a layer house to find the main reason resulting in the variations of airflows in different aisles. Then CFD simulations were carried out with different distances (D=2 m, 3 m or 4 m) between the pads on end-wall and the extra pads on side walls. The field test showed that airflow streams from the different groups of cooling pads collided vertically at the house corners, mixed with each other, then flew towards the center of the house. This was the main reason that the wind speed in the middle aisle was much higher than in other aisles, leaving large zones of lower ventilation in the aisles adjacent to the sidewalls. The results of CFD simulations indicated that air distributions could be significantly improved when the extra pieces of pads were moved away for an appropriate distance from the end cooling pads. As far as conventional poultry house with a span of 12 m, the air speeds in different aisles were more uniform when this distance was about 3 m

    Large Scale Application of Vibration Sensors for Fan Monitoring at Commercial Layer Hen Houses

    Get PDF
    Continuously monitoring the operation of each individual fan can significantly improve the measurement quality of aerial pollutant emissions from animal buildings that have a large number of fans. To monitor the fan operation by detecting the fan vibration is a relatively new technique. A low-cost electronic vibration sensor was developed and commercialized. However, its large scale application has not yet been evaluated. This paper presents long-term performance results of this vibration sensor at two large commercial layer houses. Vibration sensors were installed on 164 fans of 130 cm diameter to continuously monitor the fan on/off status for two years. The performance of the vibration sensors was compared with fan rotational speed (FRS) sensors. The vibration sensors exhibited quick response and high sensitivity to fan operations and therefore satisfied the general requirements of air quality research. The study proved that detecting fan vibration was an effective method to monitor the on/off status of a large number of single-speed fans. The vibration sensor itself was 2moreexpensivethanamagneticproximityFRSsensorbuttheoverallcostincludinginstallationanddataacquisitionhardwarewas2 more expensive than a magnetic proximity FRS sensor but the overall cost including installation and data acquisition hardware was 77 less expensive than the FRS sensor. A total of nine vibration sensors failed during the study and the failure rate was related to the batches of product. A few sensors also exhibited unsteady sensitivity. As a new product, the quality of the sensor should be improved to make it more reliable and acceptable
    corecore