490 research outputs found

    Dispersal patterns of endogenous bacteria among grass carp (Ctenopharyngodon idellus) guts

    Get PDF
    The formation and regulation of vertebrate endogenous intestinal microbiota has been widely studied as the microbiota plays a crucial role in the host nutrition, development, and health. Despite the importance of microbiota for host health, it is still unclear whether the endogenous intestinal microorganisms are genetically distinct or whether they are genetically related with each other in different host individuals. In the present study, the dispersal situation of the endogenous intestinal bacteria in grass carp was investigated by constructing bacterial 16S rRNA gene clone libraries. The results indicate that the bacteria harbored in the grass carp gut could be separated into the following two groups: a- the private operational taxonomic units (OTUs), which include Cetobacterium somerae, Aeromonas jandaei, Citrobacter freundii, Achromobacter xylosoxidans and Bacteroides species; b- the shared OTUs, which include Vibrio cholerae, Plesiomonas shigelloides and Pasteurella speices. The results obtained in this investigation provide valuable information for assessing the mechanism of spread of the endogenous intestinal bacteria, especially the pathogenic ones. However, the mechanisms involved in different modes of bacterial dispersal in the grass carp gut still require further research

    Molecular dynamics simulations of oxide memristors: thermal effects

    Get PDF
    We have extended our recent molecular-dynamic simulations of memristors to include the effect of thermal inhomogeneities on mobile ionic species appearing during operation of the device. Simulations show a competition between an attractive short-ranged interaction between oxygen vacancies and an enhanced local temperature in creating/destroying the conducting oxygen channels. Such a competition would strongly affect the performance of the memristive devices.Comment: submit/0169777; 6 pages, 4 figure

    Investigation of plant growth and transpiration-induced matric suction under mixed grass-tree conditions

    Get PDF
    Although evapotranspiration-induced matric suction for single species has been widely studied, little is known about how mixed-species planting would affect the plant growth and induced matric suction. This study aims to explore the effects of grass-tree interaction on their growth and induced matric suction during evapotranspiration (ET) and rainfalls. Field monitoring was carried out to measure matric suction responses in compacted soil that was vegetated with (i) single tree species, Schefflera heptaphylla and (ii) mixed species of the trees and a grass species, Cynodon dactylon. In each condition, three tree spacings (120, 180 and 240 mm) were planted. When tree spacing increased from 120 to 240 mm, the peak tree root area index (RAI, for fine roots with diameterThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Turning Antibodies into Ratiometric Bioluminescent Sensors for Competition-Based Homogeneous Immunoassays

    Get PDF
    Here we present LUCOS (Luminescent Competition Sensor), a modular and broadly applicable bioluminescent diagnostic platform enabling the detection of both small molecules and protein biomarkers. The construction of LUCOS sensors entails the covalent and site-specific coupling of a bioluminescent sensor component to an analyte-specific antibody via protein G-mediated photoconjugation. Target detection is accomplished through intramolecular competition with a tethered analyte competitor for antibody binding. We established two variants of LUCOS: an inherent ratiometric LUCOSR variant and an intensiometric LUCOSI version, which can be used for ratiometric detection upon the addition of a split calibrator luciferase. To demonstrate the versatility of the LUCOS platform, sensors were developed for the detection of the small molecule cortisol and the protein biomarker NT-proBNP. Sensors for both targets displayed analyte-dependent changes in the emission ratio and enabled detection in the micromolar concentration range (KD,app = 16-92 μM). Furthermore, we showed that the response range of the LUCOS sensor can be adjusted by attenuating the affinity of the tethered NT-proBNP competitor, which enabled detection in the nanomolar concentration range (KD,app = 317 ± 26 nM). Overall, the LUCOS platform offers a highly versatile and easy method to convert commercially available monoclonal antibodies into bioluminescent biosensors that provide a homogeneous alternative for the competitive immunoassay.</p

    Deceleration and trapping of heavy diatomic molecules using a ring-decelerator

    Full text link
    We present an analysis of the deceleration and trapping of heavy diatomic molecules in low-field seeking states by a moving electric potential. This moving potential is created by a 'ring-decelerator', which consists of a series of ring-shaped electrodes to which oscillating high voltages are applied. Particle trajectory simulations have been used to analyze the deceleration and trapping efficiency for a group of molecules that is of special interest for precision measurements of fundamental discrete symmetries. For the typical case of the SrF molecule in the (N,M) = (2, 0) state, the ring-decelerator is shown to outperform traditional and alternate-gradient Stark decelerators by at least an order of magnitude. If further cooled by a stage of laser cooling, the decelerated molecules allow for a sensitivity gain in a parity violation measurement, compared to a cryogenic molecular beam experiment, of almost two orders of magnitude

    Asymptotic Expansions for Stationary Distributions of Perturbed Semi-Markov Processes

    Full text link
    New algorithms for computing of asymptotic expansions for stationary distributions of nonlinearly perturbed semi-Markov processes are presented. The algorithms are based on special techniques of sequential phase space reduction, which can be applied to processes with asymptotically coupled and uncoupled finite phase spaces.Comment: 83 page

    Thermodynamics of Dipolar Chain Systems

    Full text link
    The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects of the intralayer repulsion and quantum statistical requirements in systems with more than one chain. Specifically, we consider the case of two chains and solve the problem analytically within the harmonic Hamiltonian approach which is accurate for large dipole moments. The case of three chains is calculated numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments.Comment: 15 pages, 5 figures, final versio

    The Muonium Atom as a Probe of Physics beyond the Standard Model

    Get PDF
    The observed interactions between particles are not fully explained in the successful theoretical description of the standard model to date. Due to the close confinement of the bound state muonium (M=μ+e−M = \mu^+ e^-) can be used as an ideal probe of quantum electrodynamics and weak interaction and also for a search for additional interactions between leptons. Of special interest is the lepton number violating process of sponteanous conversion of muonium to antimuonium.Comment: 15 pages,6 figure

    Theory of Figures to the Seventh Order and the Interiors of Jupiter and Saturn

    Get PDF
    Interior modeling of Jupiter and Saturn has advanced to a state where thousands of models are generated that cover the uncertainty space of many parameters. This approach demands a fast method of computing their gravity field and shape. Moreover, the Cassini mission at Saturn and the ongoing Juno mission delivered gravitational harmonics up to J12. Here we report the expansion of the theory of figures, which is a fast method for gravity field and shape computation, to the seventh order (ToF7), which allows for computation of up to J14. We apply three different codes to compare the accuracy using polytropic models. We apply ToF7 to Jupiter and Saturn interior models in conjunction with CMS-19 H/He equation of state. For Jupiter, we find that J6 is best matched by a transition from an He-depleted to He-enriched envelope at 2–2.5 Mbar. However, the atmospheric metallicity reaches 1 × solar only if the adiabat is perturbed toward lower densities, or if the surface temperature is enhanced by ∼14 K from the Galileo value. Our Saturn models imply a largely homogeneous-in-Z envelope at 1.5–4 × solar atop a small core. Perturbing the adiabat yields metallicity profiles with extended, heavy-element-enriched deep interior (diffuse core) out to 0.4 RSat, as for Jupiter. Classical models with compact, dilute, or no core are possible as long as the deep interior is enriched in heavy elements. Including a thermal wind fitted to the observed wind speeds, representative Jupiter and Saturn models are consistent with all observed Jn values
    • …
    corecore