15 research outputs found

    Rapid decline in the susceptibility of Plasmodium falciparum to dihydroartemisinin-piperaquine in the south of Vietnam

    No full text
    Background Artemisinin resistant Plasmodium falciparum has emerged in the countries of the Greater Mekong sub‑region posing a serious threat to global malaria elimination efforts. The relationship of artemisinin resistance to treatment failure has been unclear. Methods In annual studies conducted in three malaria endemic provinces in the south of Vietnam (Binh Phuoc, Ninh Thuan and Gia Lai) between 2011 and 2015, 489 patients with uncomplicated P. falciparum malaria were enrolled in detailed clinical, parasitological and molecular therapeutic response assessments with 42 days follow up. Patients received the national recommended first‑line treatment dihydroartemisinin‑piperaquine for three days. Results Over the 5 years the proportion of patients with detectable parasitaemia on day 3 rose steadily from 38 to 57% (P andlt; 0.001). In Binh Phuoc province, the parasite clearance half‑life increased from 3.75 h in 2011 to 6.60 h in 2015 (P andlt; 0.001), while treatment failures rose from 0% in 2012 and 2013, to 7% in 2014 and 26% in 2015 (P andlt; 0.001). Recrudescence was associated with in vitro evidence of artemisinin and piperaquine resistance. In the treatment failures cases of 2015, all 14 parasite isolates carried the C580Y Pfkelch 13 gene, marker of artemisinin resistance and 93% (13/14) of them carried exoE415G mutations, markers of piperaquine resistance. Conclusions In the south of Vietnam recent emergence of piperaquine resistant P. falciparum strains has accelerated the reduced response to artemisinin and has led to treatment failure rates of up to 26% to dihydroartemisinin‑piperaquine, Vietnam’s current first‑line ACT. Alternative treatments are urgently needed

    A randomized comparison of chloroquine versus dihydroartemisinin-piperaquine for the treatment of Plasmodium vivax infection in Vietnam

    No full text
    A total of 128 Vietnamese patients with symptomatic Plasmodium vivax mono-infections were enrolled in a prospective, open-label, randomized trial to receive either chloroquine or dihydroartemisinin-piperaquine (DHA-PPQ). The proportions of patients with adequate clinical and parasitological responses were 47% in the chloroquine arm (31 of 65 patients) and 66% in the DHA-PPQ arm (42 of 63 patients) in the Kaplan-Meier intention-to-treat analysis (absolute difference 19%, 95% confidence interval = 0-37%), thus establishing non-inferiority of DHA-PPQ. Fever clearance time (median 24 versus 12 hours, P = 0.02), parasite clearance time (median 36 versus 18 hours, P < 0.001), and parasite clearance half-life (mean 3.98 versus 1.80 hours, P < 0.001) were all significantly shorter in the DHA-PPQ arm. All cases of recurrent parasitemia in the chloroquine arm occurred from day 33 onward, with corresponding whole blood chloroquine concentration lower than 100 ng/mL in all patients. Chloroquine thus remains efficacious for the treatment of P. vivax malaria in southern Vietnam, but DHA-PPQ provides more rapid symptomatic and parasitological recovery

    In vivo susceptibility of Plasmodium falciparum to artesunate in Binh Phuoc Province, Vietnam.

    Get PDF
    BACKGROUND: By 2009, there were worrying signs from western Cambodia that parasitological responses to artesunate-containing treatment regimens for uncomplicated Plasmodium falciparum malaria were slower than elsewhere which suggested the emergence of artemisinin resistance. Vietnam shares a long land border with Cambodia with a large number of migrants crossing it on a daily basis. Therefore, there is an urgent need to investigate whether there is any evidence of a change in the parasitological response to the artemisinin derivatives in Vietnam. METHODS: From August 2010 to May 2011, a randomized controlled clinical trial in uncomplicated falciparum malaria was conducted to compare two doses of artesunate (AS) (2mg/kg/day versus 4 mg/kg/day for three days) followed by dihydroartemisinin-piperaquine (DHA-PPQ) and a control arm of DHA-PPQ. The goal was characterization of the current efficacy of artesunate in southern Vietnam. The primary endpoint of this study was the parasite clearance half-life; secondary endpoints included the parasite reduction ratios at 24 and 48 hours and the parasite clearance time. RESULTS: 166 patients were recruited into the study. The median parasite clearance half-lives were 3.54 (AS 2mg/kg), 2.72 (AS 4mg/kg), and 2.98 hours (DHA-PPQ) (p=0.19). The median parasite-reduction ratio at 24 hours was 48 in the AS 2mg/kg group compared with 212 and 113 in the other two groups, respectively (p=0.02). The proportions of patients with a parasite clearance time of >72 hours for AS 2mg/kg, AS 4mg/kg and DHA-PPQ were 27%, 27%, and 22%, respectively. Early treatment failure occurred in two (4%) and late clinical failure occurred in one (2%) of the 55 patients in the AS 2mg/kg group, as compared with none in the other two study arms. The PCR-corrected adequate clinical and parasitological response (APCR) rates in the three groups were 94%, 100%, and 100% (p=0.04). CONCLUSIONS: This study demonstrated faster P. falciparum parasite clearance in southern Vietnam than in western Cambodia but slower clearance in comparison with historical data from Vietnam. Further studies to determine whether this represents the emergence of artemisinin resistance in this area are needed. Currently, the therapeutic response to DHA-PPQ remains satisfactory in southern Vietnam. TRIAL REGISTRATION: NTC01165372

    K13-propeller mutations in Plasmodium falciparum populations in malaria endemic regions of Vietnam from 2009 to 2016

    No full text
    The spread of artemisinin resistant P. falciparum compromises the therapeutic efficacy of artemisinin combination therapies (ACT) and is considered the greatest threat to current global initiatives to control and eliminate malaria. This is particularly relevant for Vietnam, where dihydroartemisinin-piperaquine (DP) is the recommended ACT for P. falciparum The propeller domain gene of K13, a molecular marker of artemisinin resistance, was sequenced successfully in 1060 P. falciparum isolates collected at 3 malaria hotspots in Vietnam between 2009 and 2016. Eight K13 propeller mutations (Thr474Ile, Tyr493His, Arg539Thr, Ile543Thr, Pro553Leu, Val568Gly, Pro574Leu and Cys580Tyr) were found, including several that have been validated as artemisinin resistant markers. The prevalences of K13 mutations were 29% (222/767), 6% (11/188) and 43% (45/105) in in Binh Phuoc, Ninh Thuan and Gia Lai respectively. Cys580Tyr became the dominant genotype in recent years comprising 79.1% (34/43) of isolates in Binh Phuoc and 63% (17/27) in Gia Lai Province. K13 mutations were associated with reduced ring stage susceptibility to dihydroartemisinin (DHA) in-vitro and prolonged parasite clearance in-vivo. An analysis of haplotypes flanking K13 suggested the presence of multiple strains with Cys580Tyr, rather than a single strain expanding across the three sites

    The prevalence, incidence and prevention of Plasmodium falciparum infections in forest rangers in Bu Gia Map National Park, Binh Phuoc province, Vietnam: a pilot study.

    No full text
    Background Prophylaxis for high-risk populations, such as forest workers, could be one component for malaria elimination in the Greater Mekong Sub-region. A study was conducted to assess the malaria incidence in forest rangers and the feasibility of malaria prophylaxis for rangers sleeping in forest camps. Methods Forest rangers deployed in the Bu Gia Map National Park, Vietnam were invited to participate in the study. Plasmodium infections were cleared using presumptive treatment, irrespective of malaria status, with a 3-day course dihydroartemisinin/piperaquine (DP) and a 14-day course of primaquine. Before returning to the forest, study participants were randomly allocated to a 3-day course of DP or placebo. Fifteen days after returning from their forest deployment the participants were tested for Plasmodium infections using uPCR. Results Prior to treatment, 30 of 150 study participants (20%) were found to be infected with Plasmodium. Seventeen days (median) after enrolment the rangers were randomized to DP or placebo 2 days before returning to forest camps where they stayed between 2 and 20 days (median 9.5 days). One ranger in the DP-prophylaxis arm and one in the placebo arm were found to be infected with Plasmodium falciparum 15 days (median) after returning from the forest. The evaluable P. falciparum isolates had molecular markers indicating resistance to artemisinins (K13-C580Y) and piperaquine (plasmepsin), but none had multiple copies of pfmdr1 associated with mefloquine resistance. Conclusion Anti-malarial prophylaxis in forest rangers is feasible. The findings of the study highlight the threat of multidrug-resistant malaria.</p

    K13-propeller mutations in Plasmodium falciparum populations in malaria endemic regions of Vietnam from 2009 to 2016

    No full text
    The spread of artemisinin resistant P. falciparum compromises the therapeutic efficacy of artemisinin combination therapies (ACT) and is considered the greatest threat to current global initiatives to control and eliminate malaria. This is particularly relevant for Vietnam, where dihydroartemisinin-piperaquine (DP) is the recommended ACT for P. falciparum The propeller domain gene of K13, a molecular marker of artemisinin resistance, was sequenced successfully in 1060 P. falciparum isolates collected at 3 malaria hotspots in Vietnam between 2009 and 2016. Eight K13 propeller mutations (Thr474Ile, Tyr493His, Arg539Thr, Ile543Thr, Pro553Leu, Val568Gly, Pro574Leu and Cys580Tyr) were found, including several that have been validated as artemisinin resistant markers. The prevalences of K13 mutations were 29% (222/767), 6% (11/188) and 43% (45/105) in in Binh Phuoc, Ninh Thuan and Gia Lai respectively. Cys580Tyr became the dominant genotype in recent years comprising 79.1% (34/43) of isolates in Binh Phuoc and 63% (17/27) in Gia Lai Province. K13 mutations were associated with reduced ring stage susceptibility to dihydroartemisinin (DHA) in-vitro and prolonged parasite clearance in-vivo. An analysis of haplotypes flanking K13 suggested the presence of multiple strains with Cys580Tyr, rather than a single strain expanding across the three sites

    Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia.

    No full text
    The emergence of artemisinin-resistant Plasmodium falciparum in Southeast Asia threatens malaria treatment efficacy. Mutations in a kelch protein encoded on P. falciparum chromosome 13 (K13) have been associated with resistance in vitro and in field samples from Cambodia.P. falciparum infections from artesunate efficacy trials in Bangladesh, Cambodia, Laos, Myanmar, and Vietnam were genotyped at 33 716 genome-wide single-nucleotide polymorphisms (SNPs). Linear mixed models were used to test associations between parasite genotypes and parasite clearance half-lives following artesunate treatment. K13 mutations were tested for association with artemisinin resistance, and extended haplotypes on chromosome 13 were examined to determine whether mutations arose focally and spread or whether they emerged independently.The presence of nonreference K13 alleles was associated with prolonged parasite clearance half-life (P = 1.97 Ă— 10(-12)). Parasites with a mutation in any of the K13 kelch domains displayed longer parasite clearance half-lives than parasites with wild-type alleles. Haplotype analysis revealed both population-specific emergence of mutations and independent emergence of the same mutation in different geographic areas.K13 appears to be a major determinant of artemisinin resistance throughout Southeast Asia. While we found some evidence of spreading resistance, there was no evidence of resistance moving westward from Cambodia into Myanmar
    corecore