46,679 research outputs found

    Super-Poissonian noise in a Coulomb blockade metallic quantum dot structure

    Full text link
    The shot noise of the current through a single electron transistor (SET), coupled capacitively with an electronic box, is calculated, using the master equation approach. We show that the noise may be sub-Poissonian or strongly super-Poissonian, depending mainly on the box parameters and the gate. The study also supports the idea that not negative differential conductance, but charge accumulation in the quantum dot, responds for the super-Poissonian noise observed.Comment: 4 Pages, 3 Figure

    Generalized Impedance Boundary Conditions for Strongly Absorbing Obstacles: the full Wave Equations

    Full text link
    This paper is devoted to the study of the generalized impedance boundary conditions (GIBCs) for a strongly absorbing obstacle in the {\bf time} regime in two and three dimensions. The GIBCs in the time domain are heuristically derived from the corresponding conditions in the time harmonic regime. The latters are frequency dependent except the one of order 0; hence the formers are non-local in time in general. The error estimates in the time regime can be derived from the ones in the time harmonic regime when the frequency dependence is well-controlled. This idea is originally due to Nguyen and Vogelius in \cite{NguyenVogelius2} for the cloaking context. In this paper, we present the analysis to the GIBCs of orders 0 and 1. To implement the ideas in \cite{NguyenVogelius2}, we revise and extend the work of Haddar, Joly, and Nguyen in \cite{HJNg1}, where the GIBCs were investigated for a fixed frequency in three dimensions. Even though we heavily follow the strategy in \cite{NguyenVogelius2}, our analysis on the stability contains new ingredients and ideas. First, instead of considering the difference between solutions of the exact model and the approximate model, we consider the difference between their derivatives in time. This simple idea helps us to avoid the machinery used in \cite{NguyenVogelius2} concerning the integrability with respect to frequency in the low frequency regime. Second, in the high frequency regime, the Morawetz multiplier technique used in \cite{NguyenVogelius2} does not fit directly in our setting. Our proof makes use of a result by H\"ormander in \cite{Hor}. Another important part of the analysis in this paper is the well-posedness in the time domain for the approximate problems imposed with GIBCs on the boundary of the obstacle, which are non-local in time
    • …
    corecore