6,041 research outputs found
Recommended from our members
Electronic materials based on conducting metallopolymers and self-assembly
Conducting metallopolymers (CMPs) have been extensively studied due to their potential for various applications in sensing, catalysis, light-emitting diodes, and energy harvesting and storage. The incorporation of metal centers into conjugated organic polymer backbones not only makes these materials multi-functional, but also changes the properties, such as electroactivity and conductivity. In this work, we aim to take advantage of the direct electronic interaction between metal centers and polymer backbones in these metallopolymers to make novel materials that could be used for photovoltaic and spintronic applications. Furthermore, a fundamental study on the interactive role of transition metals in conducting metallopolymers has been conducted, which could help to provide insights for the rational design of metallopolymers for certain applications. Charge transfer in hybrid photovoltaics is often inhibited by the capping ligands on inorganic semiconductors. To bypass the ligand effect, my study was focused on preparing a conducting metallopolymer, in which metal ions are directly bound to the conjugated organic backbone. These metal ions will serve as nucleation or seed points upon which the inorganic semiconductor can grow directly within the polymer matrix. This fabrication method provides materials with direct bonds between the inorganic semiconductor and the conducting polymer backbone and therefore results in direct electronic communication between the donor and acceptor. With this material, the charge transfer limited by capping ligands could be overcome and can result in highly efficient devices when utilized in solar cells. Besides the efforts to harvest energy form renewable resources, changing the way that we use energy (e.g., in lighting and information storage) could also help to reduce our energy demand. The bistability offered by spin-crossover (SCO) complexes has resulted in sustained research interest due to potential applications in molecular electronics such as memory storage. Interested in making memory devices with a bottom up approach, we have designed and prepared CMPs that are not only conductive but also possess spin-crossover behavior. The novelty of this study lies in the fact that spin-switching could be possibly obtained by changing the oxidation states of metal centers, which could be done at room temperature, offering a new method for spin switching compared to conventional methods for SCO such as in thermal-induced spin transition. To study the charge delocalization and charge transport in CMPs, a series of conducting polymers of Schiff-base ligands and metal complexes have been prepared and characterized. Our successful syntheses of ligand polymers allows for full characterization and direct comparison of these polymers to the corresponding metal-containing polymers, from which the role of the metal centers is elucidated. The effects of conjugation length on electrochemical and spectroscopic properties are also investigated and discussed.Chemistr
Simulation of cellular irradiation with the CENBG microbeam line using GEANT4
Light-ion microbeams provide a unique opportunity to irradiate biological
samples at the cellular level and to investigate radiobiological effects at low
doses of high LET ionising radiation. Since 1998 a single-ion irradiation
facility has been developed on the focused horizontal microbeam line of the
CENBG 3.5 MV Van de Graaff accelerator. This setup delivers in air single
protons and alpha particles of a few MeV onto cultured cells, with a spatial
resolution of a few microns, allowing subcellular targeting. In this paper, we
present results from the use of the GEANT4 toolkit to simulate cellular
irradiation with the CENBG microbeam line, from the entrance to the microprobe
up to the cellular medium.Comment: 6 pages, 8 figures, presented at the 2003 IEEE-NSS conference,
Portland, OR, USA, October 20-24, 200
Recommended from our members
EDDE : a framework to explore, design, develop and evaluate technology-enhanced instruction for construction
textTechnology-enhanced instruction has a great potential to support the learning process. However, the engaging power of technology can become a distracting factor if it is not deployed properly. Unfortunately, the current literature in instructional design and user interface design is broad and not easily accessible by construction faculty. This dissertation presents a framework to guide the development of technology-assisted instruction for the classroom. The framework developed is called EDDE which stands for four conceptual steps involved in the creation of a technology-supported teaching tool: Explore, Design, Develop, and Evaluate. EDDE contains a novel synthesis of the literature in instructional design and user interface design as well as survey data of student subject matter knowledge and information technology background. A computerized tool called EDDEaid makes accessible the large store of knowledge supporting EDDE. Assessment of EDDEaid is presented with evaluation results from nine university faculty that teach construction subjects as well as through critique of and changes to an existing interactive learning tool. EDDE and EDDEaid are found to contribute to the body of knowledge regarding the deployment of technology-enhanced instruction and provide support to construction faculty developing learning tools.Civil, Architectural, and Environmental Engineerin
Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment
© 2016 Elsevier Ltd. For the first time, an innovative concept of combining sponge-based moving bed (SMB) and an osmotic membrane bioreactor (OsMBR), known as the SMB-OsMBR hybrid system, were investigated using Triton X-114 surfactant coupled with MgCl2 salt as the draw solution. Compared to traditional activated sludge OsMBR, the SMB-OsMBR system was able to remove more nutrients due to the thick-biofilm layer on sponge carriers. Subsequently less membrane fouling was observed during the wastewater treatment process. A water flux of 11.38 L/(m2 h) and a negligible reverse salt flux were documented when deionized water served as the feed solution and a mixture of 1.5 M MgCl2 and 1.5 mM Triton X-114 was used as the draw solution. The SMB-OsMBR hybrid system indicated that a stable water flux of 10.5 L/(m2 h) and low salt accumulation were achieved in a 90-day operation. Moreover, the nutrient removal efficiency of the proposed system was close to 100%, confirming the effectiveness of simultaneous nitrification and denitrification in the biofilm layer on sponge carriers. The overall performance of the SMB-OsMBR hybrid system using MgCl2 coupled with Triton X-114 as the draw solution demonstrates its potential application in wastewater treatment
The Role of Anisotropy in Distinguishing Domination of Néel or Brownian Relaxation Contribution to Magnetic Inductive Heating: Orientations for Biomedical Applications
Magnetic inductive heating (MIH) has been a topic of great interest because of its potential applications, especially in biomedicine. In this paper, the parameters characteristic for magnetic inductive heating power including maximum specific loss power (SLPmax), optimal nanoparticle diameter (Dc) and its width (ΔDc) are considered as being dependent on magnetic nanoparticle anisotropy (K). The calculated results suggest 3 different Néel-domination (N), overlapped Néel/Brownian (NB), and Brownian-domination (B) regions. The transition from NB- to B-region changes abruptly around critical anisotropy Kc. For magnetic nanoparticles with low K (K Kc) are opposite. The decreases of the SLPmax when increasing polydispersity and viscosity are characterized by different rates of d(SLPmax)/dσ and d(SLPmax)/dη depending on each domination region. The critical anisotropy Kc varies with the frequency of an alternating magnetic field. A possibility to improve heating power via increasing anisotropy is analyzed and deduced for Fe3O4 magnetic nanoparticles. For MIH application, the monodispersity requirement for magnetic nanoparticles in the B-region is less stringent, while materials in the N- and/or NB-regions are much more favorable in high viscous media. Experimental results on viscosity dependence of SLP for CoFe2O4 and MnFe2O4 ferrofluids are in good agreement with the calculations. These results indicated that magnetic nanoparticles in the N- and/or NB-regions are in general better for application in elevated viscosity media
Elastic exciton-exciton scattering in photoexcited carbon nanotubes
International audienceWe report on original nonlinear spectral hole-burning experiments in single wall carbon nanotubes that bring evidence of pure dephasing induced by exciton-exciton scattering. We show that the collision-induced broadening in carbon nanotubes is controlled by exciton-exciton scattering as for Wannier excitons in inorganic semiconductors, while the population relaxation is driven by exciton-exciton annihilation as for Frenkel excitons in organic materials. We demonstrate that this singular behavior originates from the intrinsic one-dimensionality of excitons in carbon nanotubes, which display unique hybrid features of organic and inorganic systems
Quantum key distribution using gaussian-modulated coherent states
Quantum continuous variables are being explored as an alternative means to
implement quantum key distribution, which is usually based on single photon
counting. The former approach is potentially advantageous because it should
enable higher key distribution rates. Here we propose and experimentally
demonstrate a quantum key distribution protocol based on the transmission of
gaussian-modulated coherent states (consisting of laser pulses containing a few
hundred photons) and shot-noise-limited homodyne detection; squeezed or
entangled beams are not required. Complete secret key extraction is achieved
using a reverse reconciliation technique followed by privacy amplification. The
reverse reconciliation technique is in principle secure for any value of the
line transmission, against gaussian individual attacks based on entanglement
and quantum memories. Our table-top experiment yields a net key transmission
rate of about 1.7 megabits per second for a loss-free line, and 75 kilobits per
second for a line with losses of 3.1 dB. We anticipate that the scheme should
remain effective for lines with higher losses, particularly because the present
limitations are essentially technical, so that significant margin for
improvement is available on both the hardware and software.Comment: 8 pages, 4 figure
Amphiphilic linear-dendritic block copolymers for drug delivery
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2007.Includes bibliographical references.Polymeric drug delivery systems have been widely used in the pharmaceutical industry. Such systems can solubilize and sequester hydrophobic drugs from degradation, thereby increasing circulation half-life and efficacy. However, there are still challenges in the design of drug delivery vehicles to achieve efficient drug delivery in a site-specific manner. In this thesis, an amphiphilic linear-dendritic block copolymer was designed, synthesized, and applied as a new polymeric drug delivery platform. First, to develop the drug delivery vehicle, an ABA dendritic-linear-dendritic block copolymer consisting of poly(amidoamine) (PAMAM) and poly(propylene oxide) (PPO) was synthesized. In order to determine the viability of the linear-dendritic block copolymer as a drug delivery vehicle, the solution-phase self-assembly behavior and the self-assembled structures were characterized experimentally and through molecular dynamics simulations. The triblock self-assembles in aqueous media to form stable micelles with low CMC values. Dynamic light scattering results and TEM indicate the formation of particles ranging from 9 to 18 nm in diameter, with smaller diameters exhibited at higher generations. Static light scattering also confirmed the trend where the aggregation number decreased with higher generations. The experimental characterization results indicated that the physical characteristics of the PPO-PAMAM micelles were desirable and within the design specifications necessary for drug delivery. The experimental results were utilized to set up simulations where further knowledge of the microstructure of the micelles formed could be gained. It was found that the block copolymers simulated formed micelles in the same size range that was seen experimentally. However, the simulations indicated that the micelles displayed greater asphericity than dendrimers.(cont) Backfolding of the terminal amine ends was encountered, which would have implications for the configuration and spacing of any additional targeting ligand attached to the dendritic ends. Further analysis revealed that with increasing generation, the porosity of the micelles increased, which could affect the diffusion rate of drugs released out of the system. Another important finding detailed the preferential localization of a model hydrophobid drug, triclosan, in an equilibrated micelle structure. Additional experiments were performed to assess the feasibility of the nanoparticles for drug delivery applications. Drug loading studies were performed with a model hydrophobic drug, triclosan, resulting in high loading efficiencies. In comparison, linear block copolymers were half as efficient in loading triclosan. It was determined that the dendritic block synergistically increased the drug loading due to either acting as an additional block capable of encapsulating drug or sterically favoring the seclusion of the drug in the core. The linear-dendritic block copolymer synthesized was found to be a promising candidate for drug delivery due to its relative stability in aqueous solution and its drug encapsulation and release properties. Overall, the linear-dendritic block copolymer displayed physical characteristics and self-assembly behavior that satisfied the design criteria for a viable drug delivery vehicle. As a further step, the potential benefits of the novel linear-dendritic architecture were explored in two different drug delivery applications. First, PPO-PAMAM was explored as a circulating nanoparticle with the capability of multivalently targeting to specific cells, due to the presence of the dense functional groups on the dendritic block forming the corona of the micelles. PPO-PAMAM was functionalized with galactose and targeted to hepatocellular carcinoma cells. It was found that the polymer was not cytotoxic and could bind to the asialoglycoprotein receptor.(cont) The galactose-functionalized micelles were loaded with a chemotherapeutic, doxorubicin, and delivered to the carcinoma cells more efficiently than non-functionalized micelles and bare doxorubicin. The results from in vitro testing showed that PPO-PAMAM micelles with targeting capability are promising circulating drug delivery vehicles. In order to ensure success of subsequent testing in vivo of the targeted linear-dendritic block copolymer system, some improvements to the system were explored. First, PPO-PAMAM micelles were stabilized by physical entrapment of the hydrophobic core. An emulsion polymerization of hydrophobic methacrylate monomers created an interpenetrating polymer keeping the micelles intact at concentrations below the CMC and in a solubilizing solvent, methanol. This improvement would ensure that once injected into the bloodstream, the micelles would not destabilize and release high concentrations of drug. Another improvement that was explored was the synthesis of a new linear-dendritic block copolymer composed of a hydrophobic poly(amino acid) and a polyester dendron. Additionally, poly(ethyleneglycol) (PEG) groups were attached to the outer surface of the polyester dendron. The new system synthesized has a low CMC and is thermodynamically slow to break apart in the bloodstream. Furthermore, the micelles formed would be able to circulate for longer times with PEG aiding in evading the reticuloendothelial system. The second drug delivery application explored, which advantageously utilized the dendritic blocks on the outer surface of the block copolymer micelles was as a localized drug delivery coating created by the layer-by-layer (LbL) assembly approach. The electrostatic LbL assembly approach offers large potential in the area of drug delivery from thin films and surfaces; however, because the processing technique is aqueous-based, there have been few strategies proposed to incorporate hydrophobic molecules into these films.(cont) Here we created an LbL film that is capable of incorporating hydrophobic drug at high loadings via encapsulation with linear-dendritic block copolymer micelles and demonstrate for the first time release times of a hydrophobic antibacterial agent over a period of several weeks--a significant improvement over reports of other micelle-encapsulated thin films with release times of several minutes. The PAMAM block, which is polycationic, enabled LbL deposition with negatively charged poly(acrylic acid) (PAA). The stable PPO-PAMAM micelles incorporated into the LbL films encapsulated a hydrophobic bactericide, triclosan. Film thickness and UV-vis measurements confirm the formation of the LbL film and incorporation of triclosan into the film. Fluorescence measurements of PPO-PAMAM/PAA films with pyrene indicated the presence of hydrophobic domains in the film. GISAXS revealed regular spacing of approximately 10.5 nm in the direction parallel to the film substrate, which is approximately the same size as the PPO-PAMAM micelles in aqueous solution. Volume fraction measurements based on elemental analysis and TGA confirm the GISAXS data. An in vitro release study revealed long release times of triclosan on the order of weeks, and a Kirby Bauer test was performed on Staphylococcus Aureus demonstrating that the drug released was still active to inhibit the growth of bacteria. Linear-dendritic block copolymer micelles were successfully used in two different drug delivery applications where the dendritic block could be fully utilized. It is hoped that with the research and results presented in this thesis further development of this drug delivery platform can result in a product successfully treating a serious disease.by Phuong Nguyen.Ph.D
- …