3,912 research outputs found

    An Effective Method using Phrase Mechanism in Neural Machine Translation

    Full text link
    Machine Translation is one of the essential tasks in Natural Language Processing (NLP), which has massive applications in real life as well as contributing to other tasks in the NLP research community. Recently, Transformer -based methods have attracted numerous researchers in this domain and achieved state-of-the-art results in most of the pair languages. In this paper, we report an effective method using a phrase mechanism, PhraseTransformer, to improve the strong baseline model Transformer in constructing a Neural Machine Translation (NMT) system for parallel corpora Vietnamese-Chinese. Our experiments on the MT dataset of the VLSP 2022 competition achieved the BLEU score of 35.3 on Vietnamese to Chinese and 33.2 BLEU scores on Chinese to Vietnamese data. Our code is available at https://github.com/phuongnm94/PhraseTransformer

    No-arbitrage condition and existence of equilibrium with dividends

    Get PDF
    In this paper we first give an elementary proof of existence of equilibrium with dividends in an economy with possibly satiated consumers.We then introduce a no-arbitrage condition and show that it is equivalent to the existence of equilibrium with dividends.equilibrium with dividends, economy with possibly satiated consumers, no-arbitrage condition

    Employing Label Models on ChatGPT Answers Improves Legal Text Entailment Performance

    Full text link
    The objective of legal text entailment is to ascertain whether the assertions in a legal query logically follow from the information provided in one or multiple legal articles. ChatGPT, a large language model, is robust in many natural language processing tasks, including legal text entailment: when we set the temperature = 0 (the ChatGPT answers are deterministic) and prompt the model, it achieves 70.64% accuracy on COLIEE 2022 dataset, which outperforms the previous SOTA of 67.89%. On the other hand, if the temperature is larger than zero, ChatGPT answers are not deterministic, leading to inconsistent answers and fluctuating results. We propose to leverage label models (a fundamental component of weak supervision techniques) to integrate the provisional answers by ChatGPT into consolidated labels. By that way, we treat ChatGPT provisional answers as noisy predictions which can be consolidated by label models. The experimental results demonstrate that this approach can attain an accuracy of 76.15%, marking a significant improvement of 8.26% over the prior state-of-the-art benchmark. Additionally, we perform an analysis of the instances where ChatGPT produces incorrect answers, then we classify the errors, offering insights that could guide potential enhancements for future research endeavors.Comment: 15 page

    Miko Team: Deep Learning Approach for Legal Question Answering in ALQAC 2022

    Full text link
    We introduce efficient deep learning-based methods for legal document processing including Legal Document Retrieval and Legal Question Answering tasks in the Automated Legal Question Answering Competition (ALQAC 2022). In this competition, we achieve 1\textsuperscript{st} place in the first task and 3\textsuperscript{rd} place in the second task. Our method is based on the XLM-RoBERTa model that is pre-trained from a large amount of unlabeled corpus before fine-tuning to the specific tasks. The experimental results showed that our method works well in legal retrieval information tasks with limited labeled data. Besides, this method can be applied to other information retrieval tasks in low-resource languages
    • ā€¦
    corecore