29,178 research outputs found
An isogeometric analysis for elliptic homogenization problems
A novel and efficient approach which is based on the framework of
isogeometric analysis for elliptic homogenization problems is proposed. These
problems possess highly oscillating coefficients leading to extremely high
computational expenses while using traditional finite element methods. The
isogeometric analysis heterogeneous multiscale method (IGA-HMM) investigated in
this paper is regarded as an alternative approach to the standard Finite
Element Heterogeneous Multiscale Method (FE-HMM) which is currently an
effective framework to solve these problems. The method utilizes non-uniform
rational B-splines (NURBS) in both macro and micro levels instead of standard
Lagrange basis. Beside the ability to describe exactly the geometry, it
tremendously facilitates high-order macroscopic/microscopic discretizations
thanks to the flexibility of refinement and degree elevation with an arbitrary
continuity level provided by NURBS basis functions. A priori error estimates of
the discretization error coming from macro and micro meshes and optimal micro
refinement strategies for macro/micro NURBS basis functions of arbitrary orders
are derived. Numerical results show the excellent performance of the proposed
method
Batch and column adsorption of reactive dye by eggshell powder–chitosan gel core-shell material
In this study, eggshell powder-chitosan gel (EPCG) material was synthesized and tested as an adsorbent for two commercial reactive dyes in batch and dynamic modes. The EPCG material was a novel core-shell material in which the eggshell core particles were coated by a thin layer of chitosan. SEM images of dried EPCG powder showed a porous structure of the surface. In adsorption batch tests, Langmuir and Freundlich equations well described the adsorption isotherms with a maximum capacity of 2.3 mg/g at pH 4 and equilibrium time of 60 min (r2> 0.98). The adsorption process followed pseudo-second-order kinetics. Adsorption behaviour of EPCG toward the reactive dyes in fixed-bed adsorber was better described by the Clark model (r2> 0.92) than by the Bohart – Adam model (r2> 0.82). These results suggest that EPCG, as an environment-friendly material produced from waste eggshell, is very promising for wastewater treatment applications
The Vietnamese shrimp trade: livelihoods analysis of stakeholders and market chain analysis
Aquaculture and capture fisheries in Vietnam have been increasing fast in the last decade, especially aquaculture growth rate is 12% for the 1999 – 2003 period, contributing a significant part into the hunger eradication and poverty reduction1. Vietnam is to be ranked into one of the countries potential to produce the aquatic economic in the world, and the fact is that, after 40 years of establishing, the fisheries sector has made remarkable contributions to the country. By the list, at the moment the aquatic products make up about 4 - 5% of GDP and create job opportunities for over 3 three million
employees (VASEP, 2004), in which the largest contribution is from shrimp farming. [PDF contains 124 pages.
APMEC: An Automated Provisioning Framework for Multi-access Edge Computing
Novel use cases and verticals such as connected cars and human-robot
cooperation in the areas of 5G and Tactile Internet can significantly benefit
from the flexibility and reduced latency provided by Network Function
Virtualization (NFV) and Multi-Access Edge Computing (MEC). Existing frameworks
managing and orchestrating MEC and NFV are either tightly coupled or completely
separated. The former design is inflexible and increases the complexity of one
framework. Whereas, the latter leads to inefficient use of computation
resources because information are not shared. We introduce APMEC, a dedicated
framework for MEC while enabling the collaboration with the management and
orchestration (MANO) frameworks for NFV. The new design allows to reuse
allocated network services, thus maximizing resource utilization. Measurement
results have shown that APMEC can allocate up to 60% more number of network
services. Being developed on top of OpenStack, APMEC is an open source project,
available for collaboration and facilitating further research activities
Case Report: Successful Treatment of a Child With COVID-19 Reinfection-Induced Fulminant Myocarditis by Cytokine-Adsorbing oXiris® Hemofilter Continuous Veno-Venous Hemofiltration and Extracorporeal Membrane Oxygenation
BACKGROUND: Indirect cardiomyocyte damage-related hyperinflammatory response is one of the key mechanisms in COVID-19-induced fulminant myocarditis. In addition to the clinical benefit of using cytokines absorption hemofiltration, the effectiveness of instituting veno-arterial extracorporeal membrane oxygenation (VA-ECMO) support for cardiac compromise has been reported. However, current literature enunciates a paucity of available data on the effectiveness of these novel modalities.
CASE PRESENTATION: We reported a 9-year-old boy with recurrent COVID-19 infection-causing fulminant myocarditis, who was treated successfully by using novel modalities of
CONCLUSION: We conclude that the novel highly-absorptive hemofilter CVVH and VA-ECMO may be effective treatment modalities in managing SARS-CoV-2-induced fulminant myocarditis. Our report highlights the need for further well-designed investigations to confirm this extrapolation
Recommended from our members
Determination of the Aspect-ratio Distribution of Gold Nanorods in a Colloidal Solution using UV-visible absorption spectroscopy
Knowledge of the distribution of the aspect ratios (ARs) in a chemically-synthesized colloidal solution of Gold Nano Rods (GNRs) is an important measure in determining the quality of synthesis, and consequently the performance of the GNRs generated for various applications. In this work, an algorithm has been developed based on the Bellman Principle of Optimality to readily determine the AR distribution of synthesized GNRs in colloidal solutions. This is achieved by theoretically fitting the longitudinal plasmon resonance of GNRs obtained by UV-visible spectroscopy. The AR distribution obtained from the use of the algorithm developed have shown good agreement with those theoretically generated one as well as with the previously reported results. After bench-marking, the algorithm has been applied to determine the mean and standard deviation of the AR distribution of two GNRs solutions synthesized and examined in this work. The comparison with experimentally derived results from the use of expensive Transmission Electron Microscopic images and Dynamic Light Scattering technique shows that the algorithm developed offers a fast and thus potentially cost-effective solution to determine the quality of the synthesized GNRs specifically needed for many potential applications for the advanced sensor systems
- …