24 research outputs found

    Prospects for Food Fermentation in South-East Asia, Topics From the Tropical Fermentation and Biotechnology Network at the End of the AsiFood Erasmus+Project

    Get PDF
    Fermentation has been used for centuries to produce food in South-East Asia and some foods of this region are famous in the whole world. However, in the twenty first century, issues like food safety and quality must be addressed in a world changing from local business to globalization. In Western countries, the answer to these questions has been made through hygienisation, generalization of the use of starters, specialization of agriculture and use of long-distance transportation. This may have resulted in a loss in the taste and typicity of the products, in an extensive use of antibiotics and other chemicals and eventually, in a loss in the confidence of consumers to the products. The challenges awaiting fermentation in South-East Asia are thus to improve safety and quality in a sustainable system producing tasty and typical fermented products and valorising by-products. At the end of the “AsiFood Erasmus+ project” (www.asifood.org), the goal of this paper is to present and discuss these challenges as addressed by the Tropical Fermentation Network, a group of researchers from universities, research centers and companies in Asia and Europe. This paper presents current actions and prospects on hygienic, environmental, sensorial and nutritional qualities of traditional fermented food including screening of functional bacteria and starters, food safety strategies, research for new antimicrobial compounds, development of more sustainable fermentations and valorisation of by-products. A specificity of this network is also the multidisciplinary approach dealing with microbiology, food, chemical, sensorial, and genetic analyses, biotechnology, food supply chain, consumers and ethnology

    Slope Stability Numerical Analysis and Landslide Prevention of Coal Mine Waste Dump under the Impact of Rainfall—A Case Study of Janina Mine, Poland

    No full text
    In Poland, the mining waste from underground coal mines is commonly deposited in surface dump sites, forming slopes or piles of materials dozens of meters high. Because of the loose structure of a mine waste dump slope, landslides may occur after a heavy rainfall. This requires significant labor costs in reforming the mine waste dump sites and disturbs the continuity of the depositing operations. Moreover, if the mine waste dump sites located in the built-up areas, such as in the Janina mine waste dump, landslides apparently can threaten even lives and properties. Therefore, a mine waste dump stability analysis is necessary for ensuring safety. In this paper, slope stability analysis was conducted using numerical modeling under the impact of rainfall for the Janina mine waste dump, located in Libiąż, Poland. The results indicated that slope tends to loose stability in case of high rainfall intensity and short duration. Then, slope reinforcement using soil nailing and steel mesh was proposed to prevent landslide under the impact of high rainfall intensity. Once again, slope stability analysis was carried out with selected reinforcement. Meanwhile, slope monitoring was performed to assess the slope reinforcement implementation at the Janina mine waste dumps against the impact of high rainfall intensity. Based on the modeling and monitoring outcomes, assessments of slope stability and selected landslide prevention measures for the Janina mine waste dump under the impact of rainfall were presented

    Impact of longwall mining on slope stability – A case study

    No full text
    In recent decades, many open pit (OP) mines have either already made the decision or are at the planning stage to change their mining activity from OP to underground (UG) to remain competitive. Technically, before the OP ends its operation, both OP and UG mining will have to be operated simultaneously for a certain period of time. It is well known that UG operation causes subsidence, discontinuous deformations, and changes in hydrogeological conditions. In case of UG operation located below the OP mine, slope deformation can be expected as a result of subsidence induced by UG exploitation

    Numerical modeling of open pit (OP) to underground (UG) transition in coal mining

    No full text
    The primary objective of the present paper is an attempt at evaluating the influence of sub-level caving operations on the slope stability of a still-functioning open pit coal mine in Vietnam. Initially, various methods of predicting the impact of underground mining on surface stability are discussed. Those theoretical considerations were later utilized in the process of constructing a Flac-2D-software-based numerical model for calculating the influence of underground operation on the deformation and possible loss of stability of an open pit slope. The numerical analysis proved that the values of open pit slope displacements were affected mainly by underground exploitation depth, direction of operation (i.e., from one slope to the other) and the distance from the slope plane. Real geomechanical strata parameters from the Vietnamese coal basin of Cam Pha were used in the modeling process. The paper is, therefore, a critical review of the hitherto proposed methods of predicting the impact of underground operation (UG) on open pit mining (OP), illustrated with selected examples of case studies on OP-UG interaction, followed by an original experiment based on numerical modeling method. This is first such study for the genuine conditions of the coal mining in Vietnam. The obtained results, however, should not be generalized due to a highly specific character of the analyzed phenomenon of mining-induced surface deformation. The practical implications of the study may occur extremely useful in the case of an UG-OP transition. Such a transition is often necessary for both technical and economical reasons, as in some coal basins open pit operations at greater depths occur unfeasible, which calls for a proper selection of parameters for a planned underground operation

    An investigation of longwall failure using 3D numerical modelling – A case study at a copper mine

    No full text
    It is well-known that the longwall mining method (with roof caving) is widely used in underground mining extraction for bedded deposits (e.g. coal) due to its numerous advantages. Generally, this method is not commonly applied for ore deposits such as copper deposit. In Poland, the longwall mining method has been tested for thin copper deposits at the Polkowice-Sieroszowice copper mine (KGHM). Various failure modes were observed during longwall operation in the 5A/1 panel. This paper aims to examine these occurred failures. To do so, an analysis has been conducted using 3D numerical modelling to investigate the failure mode and mechanism. Based on the 3D numerical modelling results with extensive in situ measurements, causes of failure are determined and practical recommendations for further copper longwall operations are presented

    Geomechanical Assessments of Simultaneous Operation in the Case of Transition from Open Pit to Underground Mine in Vietnam

    No full text
    Nowadays, for a number of reasons, many open pit mines are considering a transition from Open Pit (OP) to Underground (UG) to remain competitive. In OP-UG transition, UG operation is operated simultaneously with the OP operation for a certain period of time. Guidelines for the simultaneous operation of OP and UG are very difficult to establish, as there are very few case studies available. Yet, because of the OP-UG interactions; the operation has a higher safety, technical and management requirements than the OP or UG methods when considered separately. In Vietnam, Cao Son is one of many OP mines, which decided to change the operational system from OP to UG. Simultaneous operation started in 2015 and will be conducted until 2030 when the OP mine Cao Son ends its mining activities. In this paper, selected geomechanical considerations of the simultaneous operation are presented. A number of numerical modelling calculations using finitedifference software with code FLAC were carried out for calibration process, slope stability analysis and the OP-UG interaction analysis for the Cao Son – Khe Cham II–IV mine. Based on the results obtained from numerical modelling, the geomechanical assessments of simultaneous operation Cao Son – Khe Cham II–IV are discussed in this paper

    Analysis of behaviour of the steel arch support in the geological and mining conditions of the Cam Pha coal basin, Vietnam

    No full text
    In recent years, the Vietnamese coal mining industry has observed a dynamic increase in both its production and efficiency. In Vietnam, the most precious type of coal is anthracite, which is found in the Quang Ninh province. Industrial anthracite deposits are estimated to be over 2 billion Mg. At present, coal deposits are extracted mostly by the underground method. Coal production is gradually increasing in the underground mines in the Quang Ninh area and it is expected to constitute about 75% of the country’s total coal production in 2030. This involves an increase in the number and length of underground workings. Cam Pha is the largest coal basin of Vietnam, located in the Quang Ninh province. So far, the yearly length of underground workings driven in underground mines in the Cam Pha basin is roughly 90÷150 km. About 84 % of these underground workings are supported by the steel arch support made of SWP profile. A similar situation can be observed in Russia, Ukraine, China, India and Turkey. In addition, the average length of repaired underground workings in the Cam Pha basin constitutes approximately 30% of the total length driven . The main cause was reported is loss of underground workings stability. This requires significant material and labour costs as well as the cost of replacing damaged elements. Addi-tionally, it disturbs the continuity of the mining operations.This article presents the results of the numerical modelling of the rock mass around underground wor-kings driven in typical geo-mining conditions for underground coal mines in the Cam Pha basin, supported by the steel arch support made of SWP and V profiles. As a result of the conducted analyses, the range of failure zone of the rock mass around underground workings and the distribution of reduced stress in the steel arch support elements were determined. The effort states of the steel arch support made of SWP22 profile and V21 profile were compared. The simulations considered different inclinations angle of coal seam, following the structure of the rock mass in the Cam Pha basin. The analysis was carried out using the based-finite difference method code, FLAC2D. Based on the obtained results, actions for improving the stability of underground workings driven in the underground mines of the Cam Pha basin were proposed

    Geomechanical Assessments of Simultaneous Operation in the Case of Transition from Open Pit to Underground Mine in Vietnam

    No full text
    Nowadays, for a number of reasons, many open pit mines are considering a transition from Open Pit (OP) to Underground (UG) to remain competitive. In OP-UG transition, UG operation is operated simultaneously with the OP operation for a certain period of time. Guidelines for the simultaneous operation of OP and UG are very difficult to establish, as there are very few case studies available. Yet, because of the OP-UG interactions; the operation has a higher safety, technical and management requirements than the OP or UG methods when considered separately. In Vietnam, Cao Son is one of many OP mines, which decided to change the operational system from OP to UG. Simultaneous operation started in 2015 and will be conducted until 2030 when the OP mine Cao Son ends its mining activities. In this paper, selected geomechanical considerations of the simultaneous operation are presented. A number of numerical modelling calculations using finitedifference software with code FLAC were carried out for calibration process, slope stability analysis and the OP-UG interaction analysis for the Cao Son – Khe Cham II–IV mine. Based on the results obtained from numerical modelling, the geomechanical assessments of simultaneous operation Cao Son – Khe Cham II–IV are discussed in this paper

    Design of High-Gain and Beam Steering Antennas Using a New Planar Folded-Line Metamaterial Structure

    No full text
    In the last few years, there has been growing interest in employing metamaterials (MTMs) to enhance antenna gain. In this paper we proposed a novel structure of planar folded-line left-handed metamaterial (FL-LHM) and applied it to improve the gain of three 5.8 GHz microstrip antenna types: a circularly polarized patch antenna, an antenna array, and a beam steering antenna. The planar FL-LHM structure was designed based on transmission line analysis. Their scattering parameters were obtained using a numerical model; the negative effective permittivity and permeability were then calculated from these parameters for the assessment of negative refraction index region. The S11 and radiation patterns of three fabricated antennas were measured; these results matched well with the simulation. We observed that the gain was increased up to 3 dBi for all the antennas. In addition, we were also able to maintain the circular polarization as well as the steering of the antenna without changing its dimensions

    Geomechanical assessments of longwall working stability – a case study

    No full text
    The stability of longwall mining is one of the most important and the most difficult aspects of underground coal mining. The loss of longwall stability can threaten lives, disrupt the continuity of the mining operations, and it requires significant materials and labour costs associated with replacing the damages. In fact, longwall mining stability is affected by many factors combined. Each case of longwall mining has its own unique and complex geological and mining conditions. Therefore, any case study of longwall stability requires an individual analysis. In Poland, longwall mining has been applied in underground coal mining for years. The stability of the longwall working is often examined using an empirical method. A regular longwall mining panel (F3) operation was designed and conducted at the Borynia-Zofiówka-Jastrzębie (BZJ) coal mine. During its advancement, roof failures were observed, causing a stoppage. This paper aims to identify and determine the mechanisms of these failures that occurred in the F3 longwall. A numerical model was performed using the finite difference method - code FLAC2D, representing the exact geological and mining conditions of the F3 longwall working. Major factors that influenced the stability of the F3 longwall were taken into account. Based on the obtained results from numerical analysis and the in-situ observations, the stability of the F3 longwall was discussed and evaluated. Consequently, recommended practical actions regarding roof control were put forward for continued operation in the F3 longwall panel
    corecore