12,683 research outputs found

    On the Design of Secure Full-Duplex Multiuser Systems under User Grouping Method

    Full text link
    Consider a full-duplex (FD) multiuser system where an FD base station (BS) is designed to simultaneously serve both downlink users and uplink users in the presence of half-duplex eavesdroppers (Eves). Our problem is to maximize the minimum secrecy rate (SR) among all legitimate users by proposing a novel user grouping method, where information signals at the FD-BS are accompanied with artificial noise to degrade the Eves' channel. The SR problem has a highly nonconcave and nonsmooth objective, subject to nonconvex constraints due to coupling between the optimization variables. Nevertheless, we develop a path-following low-complexity algorithm, which invokes only a simple convex program of moderate dimensions at each iteration. We show that our path-following algorithm guarantees convergence at least to a local optima. The numerical results demonstrate the merit of our proposed approach compared to existing well-known ones, i.e., conventional FD and nonorthogonal multiple access.Comment: 6 pages, 3 figure

    An Efficient Spectral Leakage Filtering for IEEE 802.11af in TV White Space

    Full text link
    Orthogonal frequency division multiplexing (OFDM) has been widely adopted for modern wireless standards and become a key enabling technology for cognitive radios. However, one of its main drawbacks is significant spectral leakage due to the accumulation of multiple sinc-shaped subcarriers. In this paper, we present a novel pulse shaping scheme for efficient spectral leakage suppression in OFDM based physical layer of IEEE 802.11af standard. With conventional pulse shaping filters such as a raised-cosine filter, vestigial symmetry can be used to reduce spectral leakage very effectively. However, these pulse shaping filters require long guard interval, i.e., cyclic prefix in an OFDM system, to avoid inter-symbol interference (ISI), resulting in a loss of spectral efficiency. The proposed pulse shaping method based on asymmetric pulse shaping achieves better spectral leakage suppression and decreases ISI caused by filtering as compared to conventional pulse shaping filters

    A nested hybridizable discontinuous Galerkin method for computing second-harmonic generation in three-dimensional metallic nanostructures

    Full text link
    In this paper, we develop a nested hybridizable discontinuous Galerkin (HDG) method to numerically solve the Maxwell's equations coupled with the hydrodynamic model for the conduction-band electrons in metals. By means of a static condensation to eliminate the degrees of freedom of the approximate solution defined in the elements, the HDG method yields a linear system in terms of the degrees of freedom of the approximate trace defined on the element boundaries. Furthermore, we propose to reorder these degrees of freedom so that the linear system accommodates a second static condensation to eliminate a large portion of the degrees of freedom of the approximate trace, thereby yielding a much smaller linear system. For the particular metallic structures considered in this paper, the resulting linear system obtained by means of nested static condensations is a block tridiagonal system, which can be solved efficiently. We apply the nested HDG method to compute the second harmonic generation (SHG) on a triangular coaxial periodic nanogap structure. This nonlinear optics phenomenon features rapid field variations and extreme boundary-layer structures that span multiple length scales. Numerical results show that the ability to identify structures which exhibit resonances at ω\omega and 2ω2\omega is paramount to excite the second harmonic response.Comment: 31 pages, 7 figure
    • …
    corecore