5 research outputs found

    Cryptosporidium parvum, a potential cause of colic adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cryptosporidiosis represents a major public health problem. This infection has been reported worldwide as a frequent cause of diarrhoea. Particularly, it remains a clinically significant opportunistic infection among immunocompromised patients, causing potentially life-threatening diarrhoea in HIV-infected persons. However, the understanding about different aspects of this infection such as invasion, transmission and pathogenesis is problematic. Additionally, it has been difficult to find suitable animal models for propagation of this parasite. Efforts are needed to develop reproducible animal models allowing both the routine passage of different species and approaching unclear aspects of <it>Cryptosporidium </it>infection, especially in the pathophysiology field.</p> <p>Results</p> <p>We developed a model using adult severe combined immunodeficiency (SCID) mice inoculated with <it>Cryptosporidium parvum </it>or <it>Cryptosporidium muris </it>while treated or not with Dexamethasone (Dex) in order to investigate divergences in prepatent period, oocyst shedding or clinical and histopathological manifestations. <it>C. muris</it>-infected mice showed high levels of oocysts excretion, whatever the chemical immunosuppression status. Pre-patent periods were 11 days and 9.7 days in average in Dex treated and untreated mice, respectively. Parasite infection was restricted to the stomach, and had a clear preferential colonization for fundic area in both groups. Among <it>C. parvum</it>-infected mice, Dex-treated SCID mice became chronic shedders with a prepatent period of 6.2 days in average. <it>C. parvum</it>-inoculated mice treated with Dex developed glandular cystic polyps with areas of intraepithelial neoplasia, and also with the presence of intramucosal adenocarcinoma.</p> <p>Conclusion</p> <p>For the first time <it>C. parvum </it>is associated with the formation of polyps and adenocarcinoma lesions in the gut of Dex-treated SCID mice. Additionally, we have developed a model to compare chronic <it>muris </it>and <it>parvum </it>cryptosporidiosis using SCID mice treated with corticoids. This reproducible model has facilitated the evaluation of clinical signs, oocyst shedding, location of the infection, pathogenicity, and histopathological changes in the gastrointestinal tract, indicating divergent effects of Dex according to <it>Cryptosporidium </it>species causing infection.</p

    Multilocus Fragment Typing and Genetic Structure of Cryptosporidium parvum Isolates from Diarrheic Preweaned Calves in Spain▿

    No full text
    A collection of 140 Cryptosporidium parvum isolates previously analyzed by PCR-restriction fragment length polymorphism (PCR-RFLP) and sequence analyses of the small-subunit (SSU) rRNA and 60-kDa glycoprotein (GP60) genes was further characterized by multilocus fragment typing of six minisatellite (MSB and MS5) and microsatellite (ML1, ML2, TP14, and 5B12) loci. Isolates were collected from diarrheic preweaned calves originating from 61 dairy cattle farms in northern Spain. A capillary electrophoresis-based tool combining three different fluorescent tags was used to analyze all six satellites in one capillary. Fragment sizes were adjusted after comparison with sizes obtained by sequence analysis of a selection of isolates for every allele. Size discrepancies at all but the 5B12 locus were found for those isolates that were typed by both techniques, although identical size differences were reported for every allele within each locus. A total of eight alleles were seen at the ML2 marker, which contributed the most to the discriminatory power of the multilocus approach. Multilocus fragment typing clearly improved the discriminatory power of GP60 sequencing, since a total of 59 multilocus subtypes were identified based on the combination of alleles at the six satellite loci, in contrast to the 7 GP60 subtypes previously reported. The majority of farms (38) displayed a unique multilocus subtype, and individual isolates with mixed multilocus subtypes were seen at 22 farms. Bayesian structure analysis based on combined data for both satellite and GP60 loci suggested the presence of two major clusters among the C. parvum isolates from cattle farms in this geographical area
    corecore