18 research outputs found
Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells
Activating mutations in the KRAS gene are among the most prevalent genetic changes in human cancers. To identify synthetic lethal interactions in cancer cells harbouring mutant KRAS, we performed a large-scale screen in isogenic paired colon cancer cell lines that differ by a single allele of mutant KRAS using an inducible short hairpin RNA interference library. Snail2, a zinc finger transcriptional repressor encoded by the SNAI2 gene, was found to be selectively required for the long-term survival of cancer cells with mutant KRAS that have undergone epithelial–mesenchymal transition (EMT), a transdifferentiation event that is frequently seen in advanced tumours and is promoted by RAS activation. Snail2 expression is regulated by the RAS pathway and is required for EMT. Our findings support Snail2 as a possible target for the treatment of the broad spectrum of human cancers of epithelial origin with mutant RAS that have undergone EMT and are characterized by a high degree of chemoresistance and radioresistance
Impact of black yeasts on the durability of polyurethane foam in tropical conditions in Vietnam
Polyurethane (PU) is a material that is widely used in industries. However, tropical climatic conditions in Vietnam often make the durability of PU lower than temperate climatic conditions. One of the causes of this problem is the biodegradation of microorganisms. In this study, biological characteristics of black yeast on PU is evaluated, thereby, initially assessing the impact of black yeast on the durability of PU in tropical conditions. Ten strains of black yeast were isolated from used PU foam samples in Vietnam. These black yeast strains were tested for enzyme activity including: urease activity, protease activity, polyurethanase activity. There were two strains selected to identify based on sequence analysis of the ITS1/ITS2 region, they belong to genus Aureobasidium. VN1Y3 was strain selected for biodegradability testing of PU foam samples. After 28 days of testing, the PU foam samples that have been infected with black yeasts have a change compared to the control in terms of color, surface, tensile strength, elongation. Research results have showed the impact of black yeast on the durability of PU
Surveillance and characterization of avian influenza viruses from migratory water birds in eastern Hokkaido, the northern part of Japan, 2009-2010
10.1007/s11262-012-0868-9Virus Genes462323-329VIGE
Initiation of cellular organization in lymph nodes is regulated by non-B cell-derived signals and is not dependent on CXC chemokine ligand 13
The molecular and cellular events that initiate the formation of T and B cell areas in developing lymph nodes are poorly understood. In this study we show that formation of the lymphoid architecture in murine neonatal lymph nodes evolves through a series of distinct stages. The initial segregation of T and B cells is regulated in a CXCL13-independent manner, characterized by the localization of B cells in a ring-like pattern in the outer cortex on day 4. However, during this CXCL13-independent phase of lymph node modeling, CXCL13 is expressed and regulated in a lymphotoxin-alpha1beta2 (LTalpha1beta2)-dependent manner. Surprisingly, neonatal B cells are unable to respond to this chemokine and also lack surface LTalpha1beta2 expression. At this time, CD45+CD4+CD3- cells are the predominant LTalpha1beta2-expressing cells and are also capable of responding to CXCL13. From day 4 on, architectural changes become CXCL13 dependent, and B cells become fully CXCL13 responsive, express LTalpha1beta2, and cluster in anatomically distinct follicles. Because the initial induction of CXCL13 is dependent on LTalpha1beta2, a role for CD45+CD4+CD3- cells in inducing chemokine expression in the developing lymph nodes is proposed and, as such, a role in initiation of the shaping of the microenvironment