4 research outputs found

    Nanostructured biocomposite films of high toughness based on native chitin nanofibers and chitosan

    No full text
    Chitosan is widely used in films for packaging applications. Chitosan reinforcement by stiff particles or fibers is usually obtained at the expense of lowered ductility and toughness. Here, chitosan film reinforcement by a new type of native chitin nanofibers is reported. Films are prepared by casting from colloidal suspensions of chitin in dissolved chitosan. The nanocomposite films are chitin nanofiber networks in chitosan matrix. Characterization is carried out by dynamic light scattering, quartz crystal microbalance, field emission scanning electron microscopy, tensile tests and dynamic mechanical analysis. The nanostructured biocomposite was produced in volume fractions of 0, 8, 22 and 56% chitin nanofibers. Favorable chitin-chitosan synergy for colloidal dispersion is demonstrated. Also, lowered moisture sorption is observed for the composites, probably due to the favorable chitin-chitosan interface. The highest toughness (area under stress-strain curve) was observed at 8 vol% chitin content. The toughening mechanisms and the need for well-dispersed chitin nanofibers is discussed. Finally, desired structural characteristics of ductile chitin biocomposites are discussed

    Nanostructured membranes based on native chitin nanofibers prepared by mild process

    Get PDF
    AbstractProcedures for chitin nanofiber or nanocrystal extraction from Crustaceans modify the chitin structure significantly, through surface deacetylation, surface oxidation and/or molar mass degradation. Here, very mild conditions were used to disintegrate chitin fibril bundles and isolate low protein content individualized chitin nanofibers, and prepare nanostructured high-strength chitin membranes. Most of the strongly ‘bound’ protein was removed. The degree of acetylation, crystal structure as well as length and width of the native chitin microfibrils in the organism were successfully preserved. Atomic force microscopy and scanning transmission electron microscopy, showed chitin nanofibers with width between 3 and 4nm. Chitin membranes were prepared by filtration of hydrocolloidal nanofiber suspensions. Mechanical and optical properties were measured. The highest data so far reported for nanostructured chitin membranes was obtained for ultimate tensile strength, strain to failure and work to fracture. Strong correlation was observed between low residual protein content and high tensile properties and the reasons for this are discussed
    corecore