5 research outputs found

    The Chemical Composition and Antibacterial Activities of the Essential Oils from Three Aframomum Species from Cameroon, and Their Potential as Sources of (E)-(R)-Nerolidol

    No full text
    International audienceEssential oils obtained by hydrodistillation of seeds, pericarps, leaves and rhizomes of Aframomum dalzielii, A. letestuianum and A. pruinosum grown in Cameroon were analyzed by GC-FID and GC-MS. The seed oils of the three species were characterized by a high content of (E)-(R)-nerolidol (>88.0 %), which was fully characterized by NMR spectroscopy and chiral GC analysis. The main constituents of the pericarp and rhizome oils were monoterpene hydrocarbons, mainly beta-pinene (0.8%-22.9%) and sabinene (29.0%-42.3%), along with 1,8-cineole (4.5%-23.7%); leaf oils were characterized by sesquiterpenes, namely (E)-beta-caryophyllene (18.4%-82.4%) and caryophyllene oxide (4.5%-23.7%). The antibacterial activities of these essential oils and of nine pure compounds (sabirtene, beta-pinene, 1,8-cineole, linalool, racemic (E)-nerolidol, (E)-(R)-nerolidol, (E)-beta-caryophyllene, a-humulene and caryophyllene oxide) were assessed against Micrococcus luteus and Escherichia coli. The strongest activities were observed against E. coli. The seed essential oils and their major component, (E)-(R)-nerolidol, exhibited the lowest MIC values (0.19-0.39 mu L/mL), justifying their traditional use and their potential application as natural food preservatives

    The Chemical Composition and Antibacterial Activities of the Essential Oils from Three Aframomum Species from Cameroon, and Their Potential as Sources of (E)-(R)-Nerolidol

    No full text
    Essential oils obtained by hydrodistillation of seeds, pericarps, leaves and rhizomes of Aframomum dalzielii, A. letestuianum and A. pruinosum grown in Cameroon were analyzed by GC-FID and GC-MS. The seed oils of the three species were characterized by a high content of (E)-(R)-nerolidol (>88.0 %), which was fully characterized by NMR spectroscopy and chiral GC analysis. The main constituents of the pericarp and rhizome oils were monoterpene hydrocarbons, mainly beta-pinene (0.8%-22.9%) and sabinene (29.0%-42.3%), along with 1,8-cineole (4.5%-23.7%); leaf oils were characterized by sesquiterpenes, namely (E)-beta-caryophyllene (18.4%-82.4%) and caryophyllene oxide (4.5%-23.7%). The antibacterial activities of these essential oils and of nine pure compounds (sabirtene, beta-pinene, 1,8-cineole, linalool, racemic (E)-nerolidol, (E)-(R)-nerolidol, (E)-beta-caryophyllene, a-humulene and caryophyllene oxide) were assessed against Micrococcus luteus and Escherichia coli. The strongest activities were observed against E. coli. The seed essential oils and their major component, (E)-(R)-nerolidol, exhibited the lowest MIC values (0.19-0.39 mu L/mL), justifying their traditional use and their potential application as natural food preservatives
    corecore