16 research outputs found

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations

    Glass-Forming Substances and Systems

    Full text link

    Antimicrobial activity and mineral composition of shiitake mushrooms cultivated on agricultural waste

    Full text link
    The antimicrobial activity and mineral composition of shiitake mushrooms were evaluated in four isolates of Lentinula edodes. Mushrooms were cultivated on artificial logs, based on eucalyptus sawdust enriched with 20% rice, wheat, or soybean bran, or combination of 10% of two of these supplements. The substrates were humidified with a 0.1% mate tea extract or water. Logs of Eucalyptus grandis were also used to cultivate the shiitake mushrooms. The antimicrobial activity of an aqueous extract, corresponding to 40 mg of mushroom dry matter, was in some cases, depending on the isolate, able to inhibit both Bacillus subtilis and Escherichia coli K-12, independent of substrate composition or the growth stage of the mushrooms. Nitrogen, phosphorus, potassium, magnesium and calcium concentrations varied according to the substrate on which the mushrooms were cultivated, being, generally, higher with cultivation on artificial rather than natural eucalyptus logs. It could be concluded that, in addition to the fungal isolate, substrate composition and, processing methods must be considered during the production of antimicrobial substance(s) as well as in the mushroom nutritional composition
    corecore