2,080 research outputs found

    Development of Sustainable High-Strength Self-Consolidating Concrete Utilising Fly Ash, Shale Ash and Microsilica

    Get PDF
    With high flowability and passing ability, self-consolidating concrete (SCC) does not require compaction during casting and can improve constructability. The favourable properties of SCC have enabled its widespread adoption in many parts of the world. However, there are two major issues associated with the SCC mixes commonly used in practice. First, the cement content is usually at the high side. Since the production of cement involves calcination at high temperature and is an energy-intensive process, the high cement content imparts high embodied energy and carbon footprint to the SCC mixes. Besides, the exothermic reaction of cement hydration would cause high heat generation and early thermal cracking problem that would impair structural integrity and necessitate repair. Second, the strength is usually limited to around grade 60, which is considered as medium strength in nowadays achievable norm. With a view to develop sustainable high-strength self-consolidating concrete (HS-SCC), experimental research utilising fly ash (FA), shale ash (SA), and microsilica (MS) in the production of SCC has been conducted, as reported herein

    DPSS-based Codebook Design for Near-Field XL-MIMO Channel Estimation

    Full text link
    Future sixth-generation (6G) systems are expected to leverage extremely large-scale multiple-input multiple-output (XL-MIMO) technology, which significantly expands the range of the near-field region. While accurate channel estimation is essential for beamforming and data detection, the unique characteristics of near-field channels pose additional challenges to the effective acquisition of channel state information. In this paper, we propose a novel codebook design, which allows efficient near-field channel estimation with significantly reduced codebook size. Specifically, we consider the eigen-problem based on the near-field electromagnetic wave transmission model. Moreover, we derive the general form of the eigenvectors associated with the near-field channel matrix, revealing their noteworthy connection to the discrete prolate spheroidal sequence (DPSS). Based on the proposed near-field codebook design, we further introduce a two-step channel estimation scheme. Simulation results demonstrate that the proposed codebook design not only achieves superior sparsification performance of near-field channels with a lower leakage effect, but also significantly improves the accuracy in compressive sensing channel estimation.Comment: 6 pages, 5 figure

    Integrated Sensing and Communication in Distributed Antenna Networks

    Full text link
    In this paper, we investigate the resource allocation design for integrated sensing and communication (ISAC) in distributed antenna networks (DANs). In particular, coordinated by a central processor (CP), a set of remote radio heads (RRHs) provide communication services to multiple users and sense several target locations within an ISAC frame. To avoid the severe interference between the information transmission and the radar echo, we propose to divide the ISAC frame into a communication phase and a sensing phase. During the communication phase, the data signal is generated at the CP and then conveyed to the RRHs via fronthaul links. As for the sensing phase, based on pre-determined RRH-target pairings, each RRH senses a dedicated target location with a synthesized highly-directional beam and then transfers the samples of the received echo to the CP via its fronthaul link for further processing of the sensing information. Taking into account the limited fronthaul capacity and the quality-of-service requirements of both communication and sensing, we jointly optimize the durations of the two phases, the information beamforming, and the covariance matrix of the sensing signal for minimization of the total energy consumption over a given finite time horizon. To solve the formulated non-convex design problem, we develop a low-complexity alternating optimization algorithm which converges to a suboptimal solution. Simulation results show that the proposed scheme achieves significant energy savings compared to two baseline schemes. Moreover, our results reveal that for efficient ISAC in wireless networks, energy-focused short-duration pulses are favorable for sensing while low-power long-duration signals are preferable for communication.Comment: 8 pages, 5 figure

    A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical Computation Offloading

    Full text link
    Computation offloading has become a popular solution to support computationally intensive and latency-sensitive applications by transferring computing tasks to mobile edge servers (MESs) for execution, which is known as mobile/multi-access edge computing (MEC). To improve the MEC performance, it is required to design an optimal offloading strategy that includes offloading decision (i.e., whether offloading or not) and computational resource allocation of MEC. The design can be formulated as a mixed-integer nonlinear programming (MINLP) problem, which is generally NP-hard and its effective solution can be obtained by performing online inference through a well-trained deep neural network (DNN) model. However, when the system environments change dynamically, the DNN model may lose efficacy due to the drift of input parameters, thereby decreasing the generalization ability of the DNN model. To address this unique challenge, in this paper, we propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs). Specifically, the shared backbone will be invariant during the PHs training and the inferred results will be ensembled, thereby significantly reducing the required training overhead and improving the inference performance. As a result, the joint optimization problem for offloading decision and resource allocation can be efficiently solved even in a time-varying wireless environment. Experimental results show that the proposed MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data

    Sensing User's Activity, Channel, and Location with Near-Field Extra-Large-Scale MIMO

    Full text link
    This paper proposes a grant-free massive access scheme based on the millimeter wave (mmWave) extra-large-scale multiple-input multiple-output (XL-MIMO) to support massive Internet-of-Things (IoT) devices with low latency, high data rate, and high localization accuracy in the upcoming sixth-generation (6G) networks. The XL-MIMO consists of multiple antenna subarrays that are widely spaced over the service area to ensure line-of-sight (LoS) transmissions. First, we establish the XL-MIMO-based massive access model considering the near-field spatial non-stationary (SNS) property. Then, by exploiting the block sparsity of subarrays and the SNS property, we propose a structured block orthogonal matching pursuit algorithm for efficient active user detection (AUD) and channel estimation (CE). Furthermore, different sensing matrices are applied in different pilot subcarriers for exploiting the diversity gains. Additionally, a multi-subarray collaborative localization algorithm is designed for localization. In particular, the angle of arrival (AoA) and time difference of arrival (TDoA) of the LoS links between active users and related subarrays are extracted from the estimated XL-MIMO channels, and then the coordinates of active users are acquired by jointly utilizing the AoAs and TDoAs. Simulation results show that the proposed algorithms outperform existing algorithms in terms of AUD and CE performance and can achieve centimeter-level localization accuracy.Comment: Submitted to IEEE Transactions on Communications, Major revision. Codes will be open to all on https://gaozhen16.github.io/ soo
    corecore