41,636 research outputs found

    Steady-state entanglement in a double-well Bose-Einstein condensate through coupling to a superconducting resonator

    Get PDF
    We consider a two-component Bose-Einstein condensate in a double-well potential, where the atoms are magnetically coupled to a single-mode of the microwave field inside a superconducting resonator. We find that the system has the different dark-state subspaces in the strong- and weak-tunneling regimes, respectively. In the limit of weak tunnel coupling, steady-state entanglement between the two spatially separated condensates can be generated by evolving to a mixture of dark states via the dissipation of the photon field. We show that the entanglement can be faithfully indicated by an entanglement witness. Long-lived entangled states are useful for quantum information processing with atom-chip devices.Comment: 9 pages, 7 figures, minor revisio

    Dynamical stability of entanglement between spin ensembles

    Full text link
    We study the dynamical stability of the entanglement between the two spin ensembles in the presence of an environment. For a comparative study, we consider the two cases: a single spin ensemble, and two ensembles linearly coupled to a bath, respectively. In both circumstances, we assume the validity of the Markovian approximation for the bath. We examine the robustness of the state by means of the growth of the linear entropy which gives a measure of the purity of the system. We find out macroscopic entangled states of two spin ensembles can stably exist in a common bath. This result may be very useful to generate and detect macroscopic entanglement in a common noisy environment and even a stable macroscopic memory.Comment: 4 pages, 1 figur

    Edge states in Open Antiferromagnetic Heisenberg Chains

    Full text link
    In this letter we report our results in investigating edge effects of open antiferromagnetic Heisenberg spin chains with spin magnitudes S=1/2,1,3/2,2S=1/2, 1,3/2,2 using the density-matrix renormalization group (DMRG) method initiated by White. For integer spin chains, we find that edge states with spin magnitude Sedge=S/2S_{edge}=S/2 exist, in agreement with Valence-Bond-Solid model picture. For half-integer spin chains, we find that no edge states exist for S=1/2S=1/2 spin chain, but edge state exists in S=3/2S=3/2 spin chain with Sedge=1/2S_{edge}=1/2, in agreement with previous conjecture by Ng. Strong finite size effects associated with spin dimmerization in half-integer spin chains will also be discussed.Comment: 4 pages, RevTeX 3.0, 5 figures in a separate uuencoded postscript file. Replaced once to enlarge the acknowlegement

    Screened Interaction and Self-Energy in an Infinitesimally Polarized Electron Gas via the Kukkonen-Overhauser Method

    Full text link
    The screened electron-electron interaction Wσ,σW_{\sigma, \sigma'} and the electron self-energy in an infinitesimally polarized electron gas are derived by extending the approach of Kukkonen and Overhauser. Various quantities in the expression for Wσ,σW_{\sigma, \sigma'} are identified in terms of the relevant response functions of the electron gas. The self-energy is obtained from Wσ,σW_{\sigma, \sigma'} by making use of the GW method which in this case represents a consistent approximation. Contact with previous calculations is made.Comment: 7 page

    Inductive and Electrostatic Acceleration in Relativistic Jet-Plasma Interactions

    Full text link
    We report on the observation of rapid particle acceleration in numerical simulations of relativistic jet-plasma interactions and discuss the underlying mechanisms. The dynamics of a charge-neutral, narrow, electron-positron jet propagating through an unmagnetized electron-ion plasma was investigated using a three-dimensional, electromagnetic, particle-in-cell computer code. The interaction excited magnetic filamentation as well as electrostatic plasma instabilities. In some cases, the longitudinal electric fields generated inductively and electrostatically reached the cold plasma wave-breaking limit, and the longitudinal momentum of about half the positrons increased by 50% with a maximum gain exceeding a factor of 2 during the simulation period. Particle acceleration via these mechanisms occurred when the criteria for Weibel instability were satisfied.Comment: Revised for Phys. Rev. Lett. Please see publised version for best graphic

    Luby Transform Coding Aided Bit-Interleaved Coded Modulation for the Wireless Internet

    No full text
    Bit-Interleaved Coded Modulation using Iterative Decoding (BICM-ID) is amalgamated with Luby Transform (LT) coding. The resultant joint design of the physical and data link layer substantially improves the attainable Bit Error Rate (BER) performance. A Cyclic Redundancy Check (CRC) combined with a novel Log-Likelihood Ratio (LLR) based packet reliability estimation method is proposed for the sake of detecting and disposing of erroneous packets. Subsequently, bit-by-bit LT decoding is proposed, which facilitates a further BER improvement at a lower number of BICM-ID iterations. Finally, we revisit the pseudo random generator function used for designing the LT generator matrix

    Coherent control of atomic spin currents in a double well

    Get PDF
    We propose an experimental feasible method for controlling the atomic currents of a two-component Bose-Einstein condensate in a double well by applying an external field to the atoms in one of the potential wells. We study the ground-state properties of the system and show that the directions of spin currents and net-particle tunneling can be manipulated by adiabatically varying the coupling strength between the atoms and the field. This system can be used for studying spin and tunneling phenomena across a wide range of interaction parameters. In addition, spin-squeezed states can be generated. It is useful for quantum information processing and quantum metrology.Comment: 6 pages, 7 figures, minor revisio
    corecore