2,523 research outputs found

    The application of clinical simulation in crisis management training.

    Get PDF
    Since it was first introduced more than 30 years ago, clinical simulation has become a popular tool for medical training, particularly in crisis management. The modern high-fidelity patient simulator consists of a whole-body mannequin with integrated electronic patient monitoring; it is controlled by computers capable of simulating numerous clinical scenarios and patient characteristics, and reacting to various interventions appropriately. Simulator training is theoretically superior to conventional training in management of rare crisis situations, as it allows unlimited practice in a safe yet familiar environment. Training in clinical skills can be developed, together with competency in crisis management behaviours such as leadership and communication skills. Although there is evidence demonstrating the popularity, reliability, and validity of simulator training, its superiority over conventional training has not been proven, and research in this area is required.published_or_final_versio

    Notch signaling and ghost cell fate in the calcifying cystig odontogenic tumor

    Get PDF
    Notch signaling is an evolutionarily conserved mechanism that enables adjacent cells to adopt different fates. Ghost cells (GCs) are anucleate cells with homogeneous pale eosinophilic cytoplasm and very pale to clear central areas (previous nucleus sites). Although GCs are present in a variety of odontogenic lesions notably the calcifying cystic odontogenic tumor (GCOT), their nature and process of formation remains elusive. The aim of this study was to investigate the role of Notch signaling in the cell fate specification of GCs in CCOT. Immunohistochemical staining for four Notch receptors (Notch1, Notch2, Notch3 and Notch4) and three ligands (Jagged1, Jagged2 and Delta1) was performed on archival tissues of five CCOT cases. Level of positivity was quantified as negative (0), mild (+), moderate (2+) and strong (3+). Results revealed that GCs demonstrated overexpression for Notch1 and Jagged1 suggesting that Notch1Jagged1 signaling might serve as the main transduction mechanism in cell fate decision for GCs in CCOT. Protein localizations were largely membranous and/or cytoplasmic. Mineralized GCs also stained positive implicating that the calcification process might be associated with upregulation of these molecules. The other Notch receptors and ligands were weak to absent in GCs and tumoral epithelium. Stromal endothelium and fibroblasts were stained variably positive

    Insulin refill adherence among type 2 diabetes mellitus patients attending public health clinics in Perlis, Malaysia

    Get PDF
    Poor adherence to diabetes medications, particularly insulin, is still a concern. This study aimed to assess insulin refill adherence among diabetes patients attending public health clinics in Perlis before and during the COVID-19 pandemic. The underlying factors associated with insulin refill adherence were also investigated. This cross-sectional study was conducted among type 2 diabetes mellitus patients with insulin therapy from five primary health clinics in Perlis. Simple random sampling method was used to select participants from the Pharmacy Information System (PhIS) database. Adherence to insulin refill was measured by medication possession ratio before and during the COVID-19 pandemic. A general linear model was used to identify factors associated with adherence to insulin refills. A total of 426 patients were included in this study. Patients in this study were mostly Malay (94.3%) and female (63.1%). The insulin refill adherence was significantly poorer during the COVID-19 pandemic (mean=59.24, SD=28.97) than before the pandemic (mean=68.31, SD=31.27) (p<0.001). Only total daily insulin dose (adjusted β = -0.129; p=0.012) and not having hypertension (adjusted β = -7.359; p=0.043) were significantly associated with insulin refill adherence. This study highlighted that overall insulin refill adherence among patients in public health clinics in Perlis was still low, especially during the COVID-19 pandemic. Special attention should be given to patients using high total daily insulin doses and having no hypertension to improve adherence

    Angiogenic gene expression and vascular density are reflected in ultrasonographic features of synovitis in early Rheumatoid Arthritis: an observational study.

    Get PDF
    INTRODUCTION: Neovascularization contributes to the development of sustained synovial inflammation in the early stages of Rheumatoid Arthritis. Ultrasound (US) provides an indirect method of assessing synovial blood flow and has been shown to correlate with clinical disease activity in patients with Rheumatoid Arthritis. This study examines the relationship of US determined synovitis with synovial vascularity, angiogenic/lymphangiogenic factors and cellular mediators of inflammation in a cohort of patients with early Rheumatoid Arthritis (RA) patients prior to therapeutic intervention with disease modifying therapy or corticosteroids. METHODS: An ultrasound guided synovial biopsy of the supra-patella pouch was performed in 12 patients with early RA prior to treatment. Clinical, US and biochemical assessments were undertaken prior to the procedure. Ultrasound images and histological samples were obtained from the supra-patella pouch. Histological samples were stained for Factor VIII and a-SMA (a-smooth muscle actin). Using digital imaging analysis a vascular area score was recorded. QT-PCR (quantitative-PCR) of samples provided quantification of angiogenic and lymphangiogenic gene expression and immunohistochemistry stained tissue was scored for macrophage, T cell and B cell infiltration using an existing semi-quantitative score. RESULTS: Power Doppler showed a good correlation with histological vascular area (Spearman r--0.73) and angiogenic factors such as vascular endothelial growth factor-A (VEGF-A), Angiopoietin 2 and Tie-2. In addition, lymphangiogenic factors such as VEGF-C and VEGF-R3 correlated well with US assessment of synovitis. A significant correlation was also found between power Doppler and synovial thickness, pro-inflammatory cytokines and sub-lining macrophage infiltrate. Within the supra-patella pouch there was no significant difference in US findings, gene expression or inflammatory cell infiltrate between any regions of synovium biopsied. CONCLUSION: Ultrasound assessment of synovial tissue faithfully reflects synovial vascularity. Both grey scale and power Doppler synovitis in early RA patients correlate with a pro-angiogenic and lymphangiogenic gene expression profile. In early RA both grey scale and power Doppler synovitis are associated with a pro-inflammatory cellular and cytokine profile providing considerable validity in its use as an objective assessment of synovial inflammation in clinical practice

    Endogenous Signaling by Omega-3 Docosahexaenoic Acid-derived Mediators Sustains Homeostatic Synaptic and Circuitry Integrity

    Get PDF
    The harmony and function of the complex brain circuits and synapses are sustained mainly by excitatory and inhibitory neurotransmission, neurotrophins, gene regulation, and factors, many of which are incompletely understood. A common feature of brain circuit components, such as dendrites, synaptic membranes, and other membranes of the nervous system, is that they are richly endowed in docosahexaenoic acid (DHA), the main member of the omega-3 essential fatty acid family. DHA is avidly retained and concentrated in the nervous system and known to play a role in neuroprotection, memory, and vision. Only recently has it become apparent why the surprisingly rapid increases in free (unesterified) DHA pool size take place at the onset of seizures or brain injury. This phenomenon began to be clarified by the discovery of neuroprotectin D1 (NPD1), the first-uncovered bioactive docosanoid formed from free DHA through 15-lipoxygenase-1 (15-LOX-1). NPD1 synthesis includes, as agonists, oxidative stress and neurotrophins. The evolving concept is that DHA-derived docosanoids set in motion endogenous signaling to sustain homeostatic synaptic and circuit integrity. NPD1 is anti-inflammatory, displays inflammatory resolving activities, and induces cell survival, which is in contrast to the pro-inflammatory actions of the many of omega-6 fatty acid family members. We highlight here studies relevant to the ability of DHA to sustain neuronal function and protect synapses and circuits in the context of DHA signalolipidomics. DHA signalolipidomics comprises the integration of the cellular/tissue mechanism of DHA uptake, its distribution among cellular compartments, the organization and function of membrane domains containing DHA phospholipids, and the precise cellular and molecular events revealed by the uncovering of signaling pathways regulated by docosanoids endowed with prohomeostatic and cell survival bioactivity. Therefore, this approach offers emerging targets for prevention, pharmaceutical intervention, and clinical translation involving DHA-mediated signaling

    Global Gene Expression Associated with Hepatocarcinogenesis in Adult Male Mice Induced by in Utero Arsenic Exposure

    Get PDF
    Our previous work has shown that exposure to inorganic arsenic in utero produces hepatocellular carcinoma (HCC) in adult male mice. To explore further the molecular mechanisms of transplacental arsenic hepatocarcinogenesis, we conducted a second arsenic transplacental carcinogenesis study and used a genomewide microarray to profile arsenic-induced aberrant gene expression more extensively. Briefly, pregnant C3H mice were given drinking water containing 85 ppm arsenic as sodium arsenite or unaltered water from days 8 to 18 of gestation. The incidence of HCC in adult male offspring was increased 4-fold and tumor multiplicity 3-fold after transplacental arsenic exposure. Samples of normal liver and liver tumors were taken at autopsy for genomic analysis. Arsenic exposure in utero resulted in significant alterations (p < 0.001) in the expression of 2,010 genes in arsenic-exposed liver samples and in the expression of 2,540 genes in arsenic-induced HCC. Ingenuity Pathway Analysis revealed that significant alterations in gene expression occurred in a number of biological networks, and Myc plays a critical role in one of the primary networks. Real-time reverse transcriptase–polymerase chain reaction and Western blot analysis of selected genes/proteins showed > 90% concordance. Arsenic-altered gene expression included activation of oncogenes and HCC biomarkers, and increased expression of cell proliferation–related genes, stress proteins, and insulin-like growth factors and genes involved in cell–cell communications. Liver feminization was evidenced by increased expression of estrogen-linked genes and altered expression of genes that encode gender-related metabolic enzymes. These novel findings are in agreement with the biology and histology of arsenic-induced HCC, thereby indicating that multiple genetic events are associated with transplacental arsenic hepatocarcinogenesis

    Saliva Viral Load Better Correlates with Clinical and Immunological Profiles in Children with Coronavirus Disease 2019

    Get PDF
    BACKGROUND: Pediatric COVID-19 studies exploring the relationships between NPS and saliva viral loads, clinical and immunological profiles are lacking. METHODS: Demographics, immunological profiles, nasopharyngeal swab (NPS), and saliva samples collected on admission, and hospital length of stay (LOS) were assessed in children below 18 years with COVID-19. FINDINGS: 91 patients were included between March and August 2020. NPS and saliva viral loads were correlated (r=0.315, p=0.01). Symptomatic patients had significantly higher NPS and saliva viral loads than asymptomatic patients. Serial NPS and saliva viral load measurements showed that the log10 NPS (r=-0.532, p<0.001) and saliva (r=-0.417, p<0.001) viral loads for all patients were inversely correlated with the days from symptom onset with statistical significance. Patients with cough, sputum, and headache had significantly higher saliva, but not NPS, viral loads. Higher saliva, but not NPS, viral loads were associated with total lymphopenia, CD3 and CD4 lymphopenia (all p<0.05), and were inversely correlated with total lymphocyte (r=-0.43), CD3 (r=-0.55), CD4 (r=-0.60), CD8 (r=-0.41), B (r=-0.482), and NK (r=-0.416) lymphocyte counts (all p<0.05). Interpretation: Saliva viral loads on admission in children correlated better with clinical and immunological profiles than NPS

    Histological and ultrastructural evaluation of the early healing of the lateral collateral ligament epiligament tissue in a rat knee model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this study, we evaluated the changes which occurred in the epiligament, an enveloping tissue of the ligament, during the ligament healing. We assessed the association of epiligament elements that could be involved in ligament healing.</p> <p>Methods</p> <p>Thirty-two 8-month old male Wistar rats were used in this study. In twenty-four of them the lateral collateral ligament of the knee joint was surgically transected and was allowed to heal spontaneously. The evaluation of the epiligament healing included light microscopy and transmission electron microscopy.</p> <p>Results</p> <p>At the eight, sixteenth and thirtieth day after injury, the animals were sacrificed and the ligaments were examined. Our results revealed that on the eight and sixteenth day post-injury the epiligament tissue is not completely regenerated. Till the thirtieth day after injury the epiligament is similar to normal, but not fully restored.</p> <p>Conclusion</p> <p>Our study offered a more complete description of the epiligament healing process and defined its important role in ligament healing. Thus, we provided a base for new strategies in ligament treatment.</p
    corecore