3,440 research outputs found

    An unsuspected ameloblastoma in the subpontic region of the mandible with consideration of pathogenesis from the radiographic course

    Get PDF
    The purpose of this report is to document a case of unsuspected ameloblastoma involving the right man dibular subpontic region in a 38-year-old Cambodian female patient. This lesion was purportedly preceded by multiple radiolucencies which were diagnosed as radi cular cysts and treated a few times in the past years by enucleation followed by endodontic therapy of the affected teeth. Bridgework restoration of the partially edentulous area was performed. This case report de monstrates radiographic changes that occurred in the periods before and after the diagnosis of amelo blas to ma. The case may represent an example of radicular cysts and ameloblastoma occurring as a collision phenomenon, or the ameloblastoma may have arisen as a result of neoplastic transformation of the lining epi thelium in an inflammatory odontogenic epithelial cyst

    Long-Term Stability of an Area-Reversible Atom-Interferometer Sagnac Gyroscope

    Full text link
    We report on a study of the long-term stability and absolute accuracy of an atom interferometer gyroscope. This study included the implementation of an electro-optical technique to reverse the vector area of the interferometer for reduced systematics and a careful study of systematic phase shifts. Our data strongly suggests that drifts less than 96 μ\mudeg/hr are possible after empirically removing shifts due to measured changes in temperature, laser intensity, and several other experimental parameters.Comment: 4 pages, 4 figures, submitted to PR

    Notch signaling and ghost cell fate in the calcifying cystig odontogenic tumor

    Get PDF
    Notch signaling is an evolutionarily conserved mechanism that enables adjacent cells to adopt different fates. Ghost cells (GCs) are anucleate cells with homogeneous pale eosinophilic cytoplasm and very pale to clear central areas (previous nucleus sites). Although GCs are present in a variety of odontogenic lesions notably the calcifying cystic odontogenic tumor (GCOT), their nature and process of formation remains elusive. The aim of this study was to investigate the role of Notch signaling in the cell fate specification of GCs in CCOT. Immunohistochemical staining for four Notch receptors (Notch1, Notch2, Notch3 and Notch4) and three ligands (Jagged1, Jagged2 and Delta1) was performed on archival tissues of five CCOT cases. Level of positivity was quantified as negative (0), mild (+), moderate (2+) and strong (3+). Results revealed that GCs demonstrated overexpression for Notch1 and Jagged1 suggesting that Notch1Jagged1 signaling might serve as the main transduction mechanism in cell fate decision for GCs in CCOT. Protein localizations were largely membranous and/or cytoplasmic. Mineralized GCs also stained positive implicating that the calcification process might be associated with upregulation of these molecules. The other Notch receptors and ligands were weak to absent in GCs and tumoral epithelium. Stromal endothelium and fibroblasts were stained variably positive

    SQUAMOUS ODONTOGENIC TUMOR OF THE MANDIBLE: A CASE REPORT DEMONSTRATING IMMUNOEXPRESSION OF NOTCH1, 3, 4, JAGGED1 AND DELTA1

    Get PDF
    Background:Squamous odontogenic tumor (SOT) is a rare benign odontogenic epithelial neoplasm. A slow-growing painless expansive swelling is the common presenting symptom. Histopathologically, SOT can be easily misdiagnosed as an acanthomatous ameloblastoma. Although Notch receptors and ligands have been shown to play a role in cell fate decisions in ameloblastomas, the role of these cell signaling molecules in SOT is unknown. Case report:This paper describes a case of SOT affecting the anterior mandible of a 10-year-old Indian female. The patient was treated by local surgical excision and there has been no follow-up clinical record of recurrence 5 years after primary treatment. Histopathological examination revealed a solid, locally-infiltrative neoplasm composed of bland-looking squamatoid islands scattered in a mature fibrous connective tissue stroma and the diagnosis was SOT. Immunohistochemical evaluation showed positive reactivity of varying intensity in the neoplastic epithelial cells for Notch1, Notch3, Notch4, and their ligands Jagged1 and Delta1. Expression patterns showed considerable overlap. No immunoreactivity was detected for Notch2 and Jagged2. Conclusions:Present findings suggest that Notch receptors and their ligands play differential roles in the cytodifferentiation of SOT

    Evaluation of a subunit H5 vaccine and an inactivated H5N2 avian influenza marker vaccine in ducks challenged with Vietnamese H5N1 highly pathogenic avian influenza virus

    Get PDF
    The protective efficacy of a subunit avian influenza virus H5 vaccine based on recombinant baculovirus expressed H5 haemagglutinin antigen and an inactivated H5N2 avian influenza vaccine combined with a marker antigen (tetanus toxoid) was compared with commercially available inactivated H5N2 avian influenza vaccine in young ducks. Antibody responses, morbidity, mortality, and virus shedding were evaluated after challenge with a Vietnamese clade 1 H5N1 HPAI virus [A/VN/1203/04 (H5N1)] that was known to cause a high mortality rate in ducks. All three vaccines, administered with water-in-oil adjuvant, provided significant protection and dramatically reduced the duration and titer of virus shedding in the vaccinated challenged ducks compared with unvaccinated controls. The H5 subunit vaccine was shown to provide equivalent protection to the other two vaccines despite the H5 antibody responses in subunit vaccinated ducks being significantly lower prior to challenge. Ducks vaccinated with the H5N2 marker vaccine consistently produced antitetanus toxoid antibody. The two novel vaccines have attributes that would enhance H5N1 avian influenza surveillance and control by vaccination in small scale and village poultry systems

    Probing superconducting phase fluctuations from the current noise spectrum of pseudogaped metal-superconductor tunnel junctions

    Full text link
    We study the current noise spectra of a tunnel junction of a metal with strong pairing phase fluctuation and a superconductor. It is shown that there is a characteristic peak in the noise spectrum at the intrinsic Josephson frequency ωJ=2eV\omega_J=2eV when ωJ\omega_J is smaller than the pairing gap but larger than the pairing scattering rate. In the presence of an AC voltage, the tunnelling current noise shows a series of characteristic peaks with increasing DC voltage. Experimental observation of these peaks will give direct evidence of the pair fluctuation in the normal state of high-TcT_c superconductors and from the half width of the peaks the pair decay rate can be estimated.Comment: 4 pages, 3 figure

    Starcounts Redivivus. IV. Density Laws Through Photometric Parallaxes

    Full text link
    In an effort to more precisely define the spatial distribution of Galactic field stars, we present an analysis of the photometric parallaxes of 70,000 stars covering nearly 15 square degrees in seven Kapteyn Selected Areas. We address the affects of Malmquist Bias, subgiant/giant contamination, metallicity and binary stars upon the derived density laws. The affect of binary stars is the most significant. We find that while the disk-like populations of the Milky Way are easily constrained in a simultaneous analysis of all seven fields, no good simultaneous solution for the halo is found. We have applied halo density laws taken from other studies and find that the Besancon flattened power law halo model (c/a=0.6, r^-2.75) produces the best fit to our data. With this halo, the thick disk has a scale height of 750 pc with an 8.5% normalization to the old disk. The old disk scale height is 280-300 pc. Corrected for a binary fraction of 50%, these scale heights are 940 pc and 350-375 pc, respectively. Even with this model, there are systematic discrepancies between the observed and predicted density distributions. Our model produces density overpredictions in the inner Galaxy and density underpredictions in the outer Galaxy. A possible solution is modeling the stellar halo as a two-component system in which the halo has a flattened inner distribution and a roughly spherical, but substructured outer distribution. Further reconciliation could be provided by a flared thick disk, a structure consistent with a merger origin for that population. (Abridged)Comment: 66 pages, accepted to Astrophysical journal, some figures compresse

    Dual-gated bilayer graphene hot electron bolometer

    Full text link
    Detection of infrared light is central to diverse applications in security, medicine, astronomy, materials science, and biology. Often different materials and detection mechanisms are employed to optimize performance in different spectral ranges. Graphene is a unique material with strong, nearly frequency-independent light-matter interaction from far infrared to ultraviolet, with potential for broadband photonics applications. Moreover, graphene's small electron-phonon coupling suggests that hot-electron effects may be exploited at relatively high temperatures for fast and highly sensitive detectors in which light energy heats only the small-specific-heat electronic system. Here we demonstrate such a hot-electron bolometer using bilayer graphene that is dual-gated to create a tunable bandgap and electron-temperature-dependent conductivity. The measured large electron-phonon heat resistance is in good agreement with theoretical estimates in magnitude and temperature dependence, and enables our graphene bolometer operating at a temperature of 5 K to have a low noise equivalent power (33 fW/Hz1/2). We employ a pump-probe technique to directly measure the intrinsic speed of our device, >1 GHz at 10 K.Comment: 5 figure
    corecore