21,365 research outputs found
From computation to black holes and space-time foam
We show that quantum mechanics and general relativity limit the speed
of a simple computer (such as a black hole) and its memory space
to \tilde{\nu}^2 I^{-1} \lsim t_P^{-2}, where is the Planck time.
We also show that the life-time of a simple clock and its precision are
similarly limited. These bounds and the holographic bound originate from the
same physics that governs the quantum fluctuations of space-time. We further
show that these physical bounds are realized for black holes, yielding the
correct Hawking black hole lifetime, and that space-time undergoes much larger
quantum fluctuations than conventional wisdom claims -- almost within range of
detection with modern gravitational-wave interferometers.Comment: A misidentification of computer speeds is corrected. Our results for
black hole computation now agree with those given by S. Lloyd. All other
conclusions remain unchange
Probing spacetime foam with extragalactic sources
Due to quantum fluctuations, spacetime is probably ``foamy'' on very small
scales. We propose to detect this texture of spacetime foam by looking for
core-halo structures in the images of distant quasars. We find that the Very
Large Telescope interferometer will be on the verge of being able to probe the
fabric of spacetime when it reaches its design performance. Our method also
allows us to use spacetime foam physics and physics of computation to infer the
existence of dark energy/matter, independent of the evidence from recent
cosmological observations.Comment: LaTeX, 11 pages, 1 figure; version submitted to PRL; several
references added; very useful comments and suggestions by Eric Perlman
incorporate
Comparison of chemical profiles and effectiveness between Erxian decoction and mixtures of decoctions of its individual herbs : a novel approach for identification of the standard chemicals
Acknowledgements This study was partially supported by grants from the Seed Funding Programme for Basic Research (Project Number 201211159146 and 201411159213), the University of Hong Kong. We thank Mr Keith Wong and Ms Cindy Lee for their technical assistances.Peer reviewedPublisher PD
Electronic theory for the normal state spin dynamics in SrRuO: anisotropy due to spin-orbit coupling
Using a three-band Hubbard Hamiltonian we calculate within the
random-phase-approximation the spin susceptibility, , and
NMR spin-lattice relaxation rate, 1/T, in the normal state of the triplet
superconductor SrRuO and obtain quantitative agreement with
experimental data. Most importantly, we find that due to spin-orbit coupling
the out-of-plane component of the spin susceptibility becomes at
low temperatures two times larger than the in-plane one. As a consequence
strong incommensurate antiferromagnetic fluctuations of the
quasi-one-dimensional - and -bands point into the -direction. Our
results provide further evidence for the importance of spin fluctuations for
triplet superconductivity in SrRuO.Comment: revised versio
On the Stability and the Approximation of Branching Distribution Flows, with Applications to Nonlinear Multiple Target Filtering
We analyse the exponential stability properties of a class of measure-valued
equations arising in nonlinear multi-target filtering problems. We also prove
the uniform convergence properties w.r.t. the time parameter of a rather
general class of stochastic filtering algorithms, including sequential Monte
Carlo type models and mean eld particle interpretation models. We illustrate
these results in the context of the Bernoulli and the Probability Hypothesis
Density filter, yielding what seems to be the first results of this kind in
this subject
- …