11 research outputs found

    Smart Visual Beacons with Asynchronous Optical Communications using Event Cameras

    Full text link
    Event cameras are bio-inspired dynamic vision sensors that respond to changes in image intensity with a high temporal resolution, high dynamic range and low latency. These sensor characteristics are ideally suited to enable visual target tracking in concert with a broadcast visual communication channel for smart visual beacons with applications in distributed robotics. Visual beacons can be constructed by high-frequency modulation of Light Emitting Diodes (LEDs) such as vehicle headlights, Internet of Things (IoT) LEDs, smart building lights, etc., that are already present in many real-world scenarios. The high temporal resolution characteristic of the event cameras allows them to capture visual signals at far higher data rates compared to classical frame-based cameras. In this paper, we propose a novel smart visual beacon architecture with both LED modulation and event camera demodulation algorithms. We quantitatively evaluate the relationship between LED transmission rate, communication distance and the message transmission accuracy for the smart visual beacon communication system that we prototyped. The proposed method achieves up to 4 kbps in an indoor environment and lossless transmission over a distance of 100 meters, at a transmission rate of 500 bps, in full sunlight, demonstrating the potential of the technology in an outdoor environment.Comment: 7 pages, 8 figures, accepted by IEEE International Conference on Intelligent Robots and Systems (IROS) 202

    An Asynchronous Linear Filter Architecture for Hybrid Event-Frame Cameras

    Full text link
    Event cameras are ideally suited to capture High Dynamic Range (HDR) visual information without blur but provide poor imaging capability for static or slowly varying scenes. Conversely, conventional image sensors measure absolute intensity of slowly changing scenes effectively but do poorly on HDR or quickly changing scenes. In this paper, we present an asynchronous linear filter architecture, fusing event and frame camera data, for HDR video reconstruction and spatial convolution that exploits the advantages of both sensor modalities. The key idea is the introduction of a state that directly encodes the integrated or convolved image information and that is updated asynchronously as each event or each frame arrives from the camera. The state can be read-off as-often-as and whenever required to feed into subsequent vision modules for real-time robotic systems. Our experimental results are evaluated on both publicly available datasets with challenging lighting conditions and fast motions, along with a new dataset with HDR reference that we provide. The proposed AKF pipeline outperforms other state-of-the-art methods in both absolute intensity error (69.4% reduction) and image similarity indexes (average 35.5% improvement). We also demonstrate the integration of image convolution with linear spatial kernels Gaussian, Sobel, and Laplacian as an application of our architecture.Comment: 17 pages, 10 figures, Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) in August 202

    An Asynchronous Kalman Filter for Hybrid Event Cameras

    Full text link
    Event cameras are ideally suited to capture HDR visual information without blur but perform poorly on static or slowly changing scenes. Conversely, conventional image sensors measure absolute intensity of slowly changing scenes effectively but do poorly on high dynamic range or quickly changing scenes. In this paper, we present an event-based video reconstruction pipeline for High Dynamic Range (HDR) scenarios. The proposed algorithm includes a frame augmentation pre-processing step that deblurs and temporally interpolates frame data using events. The augmented frame and event data are then fused using a novel asynchronous Kalman filter under a unifying uncertainty model for both sensors. Our experimental results are evaluated on both publicly available datasets with challenging lighting conditions and fast motions and our new dataset with HDR reference. The proposed algorithm outperforms state-of-the-art methods in both absolute intensity error (48% reduction) and image similarity indexes (average 11% improvement).Comment: 12 pages, 6 figures, published in International Conference on Computer Vision (ICCV) 202

    Overcoming Bias: Equivariant Filter Design for Biased Attitude Estimation with Online Calibration

    Full text link
    Stochastic filters for on-line state estimation are a core technology for autonomous systems. The performance of such filters is one of the key limiting factors to a system's capability. Both asymptotic behavior (e.g.,~for regular operation) and transient response (e.g.,~for fast initialization and reset) of such filters are of crucial importance in guaranteeing robust operation of autonomous systems. This paper introduces a new generic formulation for a gyroscope aided attitude estimator using N direction measurements including both body-frame and reference-frame direction type measurements. The approach is based on an integrated state formulation that incorporates navigation, extrinsic calibration for all direction sensors, and gyroscope bias states in a single equivariant geometric structure. This newly proposed symmetry allows modular addition of different direction measurements and their extrinsic calibration while maintaining the ability to include bias states in the same symmetry. The subsequently proposed filter-based estimator using this symmetry noticeably improves the transient response, and the asymptotic bias and extrinsic calibration estimation compared to state-of-the-art approaches. The estimator is verified in statistically representative simulations and is tested in real-world experiments.Comment: to be published in Robotics and Automation Letter

    Equivariant Systems Theory and Observer Design for Second Order Kinematic Systems on Matrix Lie Groups

    Get PDF
    This paper presents the equivariant systems theory and observer design for second order kinematic systems on matrix Lie groups. The state of a second order kinematic system on a matrix Lie group is naturally posed on the tangent bundle of the group with the inputs lying in the tangent of the tangent bundle known as the double tangent bundle. We provide a simple parameterization of both the tangent bundle state space and the input space (the fiber space of the double tangent bundle) and then introduce a semi-direct product group and group actions onto both the state and input spaces. We show that with the proposed group actions the second order kinematics are equivariant. An equivariant lift of the kinematics onto the symmetry group is defined and used to design a nonlinear observer on the lifted state space using nonlinear constructive design techniques. A simple hovercraft simulation verifies the performance of our observer.This work was partially supported by the Australian Research Council through the ARC Discovery Project DP160100783 “Sensing a complex world: Infinite dimensional observer theory for robots

    Non-iterative, fast SE(3) path smoothing

    Get PDF
    In this paper, we present a fast, non-iterative approach to smooth a noisy input on the Special Euclidean Group, SE(3) manifold. The translational part can be smoothed by a simple Gaussian convolution.We then proposed a novel approach to rotation smoothing. Unlike existing rotation smoothing methods using either iterative optimization methods or stochastic filtering methods, our method allows direct computation of the smoothing result and allows parallelization of the computation. Furthermore, we have done a comparative study on Jia and Evans’s method published in 2014 [1], and shown that our method can better smooth an input rotation sequence, with shorter computational time. The smoothed camera path is then used for video stabilisation, which shows fluid and smooth camera motion.Australian ARC Centre of Excellence for Robotic Vision (CE140100016

    Event Camera Calibration of Per-pixel Biased Contrast Threshold

    Get PDF
    Event cameras output asynchronous events to represent intensity changes with a high temporal resolution, even under extreme lighting conditions. Currently, most of the existing works use a single contrast threshold to estimate the intensity change of all pixels. However, complex circuit bias and manufacturing imperfections cause biased pixels and mismatch contrast threshold among pixels, which may lead to undesirable outputs. In this paper, we propose a new event camera model and two calibration approaches which cover event-only cameras and hybrid image-event cameras. When intensity images are simultaneously provided along with events, we also propose an efficient online method to calibrate event cameras that adapts to time-varying event rates. We demonstrate the advantages of our proposed methods compared to the state-of-the-art on several different event camera dataset

    MAVIS: Multi-Camera Augmented Visual-Inertial SLAM using SE2(3) Based Exact IMU Pre-integration

    Full text link
    We present a novel optimization-based Visual-Inertial SLAM system designed for multiple partially overlapped camera systems, named MAVIS. Our framework fully exploits the benefits of wide field-of-view from multi-camera systems, and the metric scale measurements provided by an inertial measurement unit (IMU). We introduce an improved IMU pre-integration formulation based on the exponential function of an automorphism of SE_2(3), which can effectively enhance tracking performance under fast rotational motion and extended integration time. Furthermore, we extend conventional front-end tracking and back-end optimization module designed for monocular or stereo setup towards multi-camera systems, and introduce implementation details that contribute to the performance of our system in challenging scenarios. The practical validity of our approach is supported by our experiments on public datasets. Our MAVIS won the first place in all the vision-IMU tracks (single and multi-session SLAM) on Hilti SLAM Challenge 2023 with 1.7 times the score compared to the second place.Comment: video link: https://youtu.be/Q_jZSjhNFf

    High Frequency, High Accuracy Pointing onboard Nanosats using Neuromorphic Event Sensing and Piezoelectric Actuation

    Full text link
    As satellites become smaller, the ability to maintain stable pointing decreases as external forces acting on the satellite come into play. At the same time, reaction wheels used in the attitude determination and control system (ADCS) introduce high frequency jitter which can disrupt pointing stability. For space domain awareness (SDA) tasks that track objects tens of thousands of kilometres away, the pointing accuracy offered by current nanosats, typically in the range of 10 to 100 arcseconds, is not sufficient. In this work, we develop a novel payload that utilises a neuromorphic event sensor (for high frequency and highly accurate relative attitude estimation) paired in a closed loop with a piezoelectric stage (for active attitude corrections) to provide highly stable sensor-specific pointing. Event sensors are especially suited for space applications due to their desirable characteristics of low power consumption, asynchronous operation, and high dynamic range. We use the event sensor to first estimate a reference background star field from which instantaneous relative attitude is estimated at high frequency. The piezoelectric stage works in a closed control loop with the event sensor to perform attitude corrections based on the discrepancy between the current and desired attitude. Results in a controlled setting show that we can achieve a pointing accuracy in the range of 1-5 arcseconds using our novel payload at an operating frequency of up to 50Hz using a prototype built from commercial-off-the-shelf components. Further details can be found at https://ylatif.github.io/ultrafinestabilisatio
    corecore