20 research outputs found

    Mental awareness improved mild cognitive impairment and modulated gut microbiome

    Get PDF
    There is ample scientific and clinical evidence of the effects of gut microbiota on the brain but no definitive evidence that the brain can affect changes in gut microbiota under the bi-directional gut-brain axis concept. As there is no pharmacotherapeutic intervention for the early stages of cognitive decline, research has focused on cognitive stimulation in reversing or slowing the impairment. Elderly patients diagnosed with mild cognitive impairment underwent a randomized-control trial of mindful awareness practice. Neuropsychological assessments, inflammatory markers, and gut microbiota profiles were tested. Here, we report that their cognitive impairment was improved and associated with changes in gut bacterial profile. A cognition-score-dependent-abundance was observed in Ruminococcus vs Recognition Trials (RT), Digit Span Backward (DSB), Semantic Fluency Span (SFS) and Memory Domain (MD); Coprococcus vs DSB, Color Trails Test 2 (CTT2) and Block Design (BD); Parabacteroides vs DSB and SFS; Fusobacterium vs DSB and CTT2; Enterobacteriaceae vs BD and SFS; Ruminococcaceae vs DSB; Phascolarctobacterium vs MD. The study showed for the first-time, alteration in the cognitive capacity leading to the corresponding changes in microbiota profiles. This strongly suggests that signals from the different segments of brain could dictate directly or indirectly the abundances of specific gut microbes

    Mindfulness Awareness Practice (MAP) to Prevent Dementia in Older Adults with Mild Cognitive Impairment: Protocol of a Randomized Controlled Trial and Implementation Outcomes

    Full text link
    Background: With an aging population, developing non-pharmacological interventions (NPIs) to delay dementia has become critical. Apart from cognitive decline, dementia is associated with multiple pathophysiology, including increased oxidative stress, dysregulated gene expressions, cytokine, neurotrophin, and stress markers, telomere shortening, and deteriorations in brain connectivity. Although mindfulness practices have been proposed to ameliorate these biological changes, no empirical studies were conducted. We thus aimed to investigate the effects of mindfulness awareness practice (MAP) to prevent cognitive decline and improve peripheral biomarkers in community-dwelling older adults diagnosed with mild cognitive impairment (MCI). Methods/Design: This was a single-blinded and parallel-group randomized controlled trial with two arms (intervention and active control arms), conducted over nine months. A total of 60 consenting community-dwelling older adults diagnosed with MCI were planned to be randomized in a 1:1 ratio to either the MAP or the Health Education Program (HEP). Interventions were performed weekly for the initial 12 weeks, and monthly for the subsequent six months. Outcome measures were assessed at baseline, 3-month, and 9-month post-intervention by blinded assessors. Primary outcomes were neurocognitive tests, comprehensive peripheral biomarkers, and brain imaging scans. Secondary outcomes included basic health screening measures, affective symptoms, and measures of physical functions. Linear-mixed models were used to examine the effects of MAP on these outcome measures. Significance: This is the first randomized controlled trial to systematically investigate the effects of a mindfulness intervention in improving cognitive functions and various biomarkers in community-dwelling older adults diagnosed with MCI. Our findings have the potential to inform mindfulness intervention as a novel approach to delay dementia

    Cognitive and physical age gaps in relation to mild cognitive impairment and behavioral phenotypes

    Full text link
    We can study how fast our biological aging clocks tick by calculating the difference (i.e., age gaps) between machine learning estimations of biological age and chronological age. While this approach has been increasingly used to study various aspects of aging, few had applied this approach to study cognitive and physical age gaps; not much is known about the behavioral and neurocognitive factors associated with these age gaps. In the present study, we examined these age gaps in relation to behavioral phenotypes and mild cognitive impairment (MCI) among community-dwelling older adults. Participants (N = 822, Agemean = 67.6) were partitioned into equally-sized training and testing samples. Cognitive and physical age-prediction models were fitted using nine cognitive and eight physical fitness test scores, respectively, within the training samples, and subsequently used to estimate cognitive and physical age gaps for each subject in the testing sample. These age gaps were then compared among those with and without MCI and correlated with 17 behavioral phenotypes in the domains of lifestyle, well-being, and attitudes. Across 5000 random train-test split iterations, we showed that older cognitive age gaps were significantly associated with MCI (versus cognitively normal) and worse outcomes across several well-being and attitude-related measures. Both age gaps were also significantly correlated with each other. These results suggest accelerated cognitive and physical aging were linked to worse well-being and more negative attitudes about the self and others and reinforce the link between cognitive and physical aging. Importantly, we have also validated the use of cognitive age gaps in the diagnosis of MCI.Submitted/Accepted versionThis work was supported by Research Donations from Kwan Im Thong Hood Cho Temple and Lee Kim Tah Holdings Pte Ltd., under the Mind Science Centre, Department of Psychological Medicine, National University of Singapore

    LFC study: Protocol for a longitudinal follow-up cohort study on ageing and mental health in community-dwelling older adults in Singapore

    Full text link
    The rapid pace of population ageing worldwide has prompted the need to better understand the ageing process. The current study, titled the Longitudinal Follow-up of the CHI (LFC) study, was a 3-year follow-up study of an earlier study titled the Community Health and Intergenerational (CHI) study. The LFC study looked to examine longitudinal changes in their cognitive functioning and psychosocial outcomes across the 3-year period. Additionally, the current study built upon the earlier CHI study by collecting neuroimaging data and exploring the long-term effects of non-pharmacological interventions, which were not examined in the prior study. A total of 653 community-dwelling participants from the baseline CHI study cohort were invited to take part in the LFC study, where they underwent a battery of neuropsychological assessments, psychosocial questionnaires, a Magnetic Resonance Imaging scan and a voice recording segment. The current study would holistically track longitudinal changes in cognitive functioning and psychosocial outcomes in the ageing population in Singapore. Unique associations between linguistics and neuroimaging data alongside cognitive and psychosocial outcomes would be explored. This study also serves to guide the development of new interventions for older adults and assist in improving the well-being of the local and global ageing population

    A 5-year community program in Singapore to prevent cognitive decline

    Full text link
    10.1111/appy.12518ASIA-PACIFIC PSYCHIATR

    Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Levels in Patients with Alzheimer’s Disease (AD): A Systematic Review and Meta-Analysis

    Full text link
    Findings from previous studies reporting the levels of serum brain-derived neurotrophic factor (BDNF) in patients with Alzheimer’s disease (AD) and individuals with mild cognitive impairment (MCI) have been conflicting. Hence, we performed a meta-analysis to examine the aggregate levels of serum BDNF in patients with AD and individuals with MCI, in comparison with healthy controls. Fifteen studies were included for the comparison between AD and healthy control (HC) (n = 2067). Serum BDNF levels were significantly lower in patients with AD (SMD: −0.282; 95% confidence interval [CI]: −0.535 to −0.028; significant heterogeneity: I2 = 83.962). Meta-regression identified age (p < 0.001) and MMSE scores (p < 0.001) to be the significant moderators that could explain the heterogeneity in findings in these studies. Additionally, there were no significant differences in serum BDNF levels between patients with AD and MCI (eight studies, n = 906) and between MCI and HC (nine studies, n = 5090). In all, patients with AD, but not MCI, have significantly lower serum BDNF levels compared to healthy controls. This meta-analysis confirmed the direction of change in serum BDNF levels in dementia. This finding suggests that a significant change in peripheral BDNF levels can only be detected at the late stage of the dementia spectrum. Molecular mechanisms, implications on interventional trials, and future directions for studies examining BDNF in dementia were discussed
    corecore