5 research outputs found

    Potential probiotic strains from milk and water kefir grains in Singapore—use for defense against enteric bacterial pathogens

    No full text
    Kefir grains consist complex symbiotic mixtures of bacteria and yeasts, and are known to impart numerous health-boosting properties to milk and water kefir beverages. Accordingly, studies have been conducted to investigate the microbiota communities in kefir grains, as well as the possibility of deriving useful probiotic strains from them. This study began with milk and water kefir grains collected from a Singapore-based homebrewer, and a total of 158 microbial strains, representing 6 fungal and 17 bacterial species, were isolated from these. Isolated genera include Lactobacillus, Liquorilactobacillus, Lacticaseibacillus, Lentilactobacillus, Leuconostoc, Lactococcus, Acetobacter, Gluconobacter, Oenococcus, Clostridium, Zymomonas, Saccharomyces, Kluyveromyces, Pichia, Lachancea, Candida and Brettanomyces. Next, a funnel approach, involving numerous phenotypic and genomic screening assays, was applied to identify kefir-derived microbial strains with highest probiotic potential. Particular focus was placed on examining the antipathogenic properties of kefir isolates towards enteric pathogens, which pose considerable global health burden. Enteric pathogens tested include from the genera Bacillus, Salmonella, Vibrio, Clostridium, Klebsiella, Escherichia and Staphylococcus. Well diffusion assays were conducted to determine the propensity of kefir isolates to inhibit growth of enteric pathogens, and a competitive adhesion/exclusion assay was used to determine the ability of kefir isolates to out-compete or exclude attachment of enteric pathogens to Caco-2 cells. Seven bacterial strains of species Lentilactobacillus hilgardii, Lacticaseibacillus paracasei, Liquorilactobacillus satsumensis, Lactobacillus helveticus and Lentilactobacillus kefiri, were ultimately identified as potential probiotics. Desirable probiotic characteristics, including good survival in acid and bile environments, bile salt hydrolase activity, antioxidant activity, non-cytotoxicity and high adhesion to Caco-2 cells, lack of virulence or antimicrobial resistance genes and presence of vitamins and GABA synthesis genes, were identified in these kefir isolates. Overall, probiotic candidates derived in this study are novel strains which can add diversity to the existing probiotics repertoire, and may also provide consumers with alternative product formats to attain the health benefits of kefir.Ministry of Education (MOE)Singapore Food AgencyPublished versionFinancial support from the Singapore Centre for Environmental Life Sciences Engineering (SCELSE) (MOE/RCE: M4330019.C70), Ministry of Education AcRF-Tier 1 grant [RG19/18 & RT08/19 (S)], Singapore Food Agency (SFS_RND_SUFP_001_06), and the Singapore National Biofilm Consortium (SNBC/2021/SF2/P04)

    A programmable lipid-polymer hybrid nanoparticle system for localized, sustained antibiotic delivery to Gram-positive and Gram-negative bacterial biofilms

    No full text
    Bacteria enmeshed in an extracellular matrix, biofilms, exhibit enhanced antibiotic tolerance. Coupled with the rapid emergence of multidrug-resistant strains, the current cohorts of antibiotics are becoming ineffective. Alternative antimicrobial approaches are therefore urgently needed to overcome recalcitrant biofilm infections. Here, we propose the use of a non-toxic lipid-polymer hybrid nanoparticle (LPN) system composed of a solid polymer core (i.e. PLGA; poly lactic-co-glycolic acid) and a cationic lipid shell (i.e. DOTAP) for localized, sustained release of antimicrobial agents to bacterial biofilms. LPNs were synthesized through a simple, robust self-assembly approach. LPNs of uniform particle size (i.e. 100–130 nm), efficiently encapsulated (up to 95%) bioimaging molecules or antibiotics and provided controlled release of the latter. The cationic lipid coating enabled the LPN to anchor onto surfaces of a diverse range of Gram-positive and Gram-negative bacterial pathogens, either in the planktonic or biofilm form. Consistently, the LPN formulations reduced more than 95% of biofilm activity at concentrations that were 8 to 32-fold lower than free antibiotics. These data clearly indicate that these novel formulations could be a useful strategy to enhance the efficacy of antimicrobials against planktonic cells and biofilms of diverse species.NRF (Natl Research Foundation, S’pore)MOE (Min. of Education, S’pore)Accepted versio

    Functional metagenomic analysis of quorum sensing signaling in a nitrifying community

    No full text
    Quorum sensing (QS) can function to shape the microbial community interactions, composition, and function. In wastewater treatment systems, acylated homoserine lactone (AHL)-based QS has been correlated with the conversion of floccular biomass into microbial granules, as well as EPS production and the nitrogen removal process. However, the role of QS in such complex communities is still not fully understood, including the QS-proficient taxa and the functional QS genes involved. To address these questions, we performed a metagenomic screen for AHL genes in an activated sludge microbial community from the Ulu Pandan wastewater treatment plant (WWTP) in Singapore followed by functional validation of luxI activity using AHL biosensors and LC-MSMS profiling. We identified 13 luxI and 30 luxR homologs from the activated sludge metagenome. Of those genes, two represented a cognate pair of luxIR genes belonging to a Nitrospira spp. and those genes were demonstrated to be functionally active. The LuxI homolog synthesized AHLs that were consistent with the dominant AHLs in the activated sludge system. Furthermore, the LuxR homolog was shown to bind to and induce expression of the luxI promoter, suggesting this represents an autoinduction feedback system, characteristic of QS circuits. Additionally, a second, active promoter was upstream of a gene encoding a protein with a GGDEF/EAL domain, commonly associated with modulating the intracellular concentration of the secondary messenger, c-di-GMP. Thus, the metagenomic approach used here was demonstrated to effectively identify functional QS genes and suggests that Nitrospira spp. maybe QS is active in the activated sludge community.Ministry of Education (MOE)National Research Foundation (NRF)Published versionThe authors would like to acknowledge the financial support from National Research Foundation and Ministry of Education Singapore under its Research Center of Excellence Program

    Lipid-Polymer Hybrid Nanoparticles Enhance the Potency of Ampicillin against Enterococcus faecalis in a Protozoa Infection Model

    No full text
    [Image: see text] Enterococcus faecalis (E. faecalis) biofilms are implicated in endocarditis, urinary tract infections, and biliary tract infections. Coupled with E. faecalis internalization into host cells, this opportunistic pathogen poses great challenges to conventional antibiotic therapy. The inability of ampicillin (Amp) to eradicate bacteria hidden in biofilms and intracellular niches greatly reduces its efficacy against complicated E. faecalis infections. To enhance the potency of Amp against different forms of E. faecalis infections, Amp was loaded into Lipid-Polymer hybrid Nanoparticles (LPNs), a highly efficient nano delivery platform consisting of a unique combination of DOTAP lipid shell and PLGA polymeric core. The antibacterial activity of these nanoparticles (Amp-LPNs) was investigated in a protozoa infection model, achieving a much higher multiplicity of infection (MOI) compared with studies using animal phagocytes. A significant reduction of total E. faecalis was observed in all groups receiving 250 μg/mL Amp-LPNs compared with groups receiving the same concentration of free Amp during three different interventions, simulating acute and chronic infections and prophylaxis. In early intervention, no viable E. faecalis was observed after 3 h LPNs treatment whereas free Amp did not clear E. faecalis after 24 h treatment. Amp-LPNs also greatly enhanced the antibacterial activity of Amp at late intervention and boosted the survival rate of protozoa approaching 400%, where no viable protozoa were identified in the free Amp groups at the 40 h postinfection treatment time point. Prophylactic effectiveness with Amp-LPNs at a concentration of 250 μg/mL was exhibited in both bacteria elimination and protozoa survival toward subsequent infections. Using protozoa as a surrogate model for animal phagocytes to study high MOI infections, this study suggests that LPN-formulated antibiotics hold the potential to significantly improve the therapeutic outcome in highly complicated bacterial infections

    Combinatorial Effect of Dietary Oregano Extracts and 3,4,5-Trihydroxy Benzoic Acid on Growth Performance and Elimination of Coccidiosis in Broiler Chickens

    No full text
    We aimed to compare the combinatorial effect of 3,4,5-trihydroxybenzoic acid (THB) and oregano extracts (OE) with THB alone on the growth performance and elimination of deleterious effects in coccidiosis-infected broilers. A total of 210 one-day-old broilers were randomly assigned to one of five dietary treatments, with six replicates each, for 35 days. Dietary treatments were: 1) non-challenged, non-treated (NC); 2) challenged, non-treated (PC); 3) PC+Salinomycin (0.05 g/kg; AB); 4) PC+THB (0.1 g/kg; THB); and 5) PC+THB+OE (0.1 g/kg; COM). On day 14, all groups except for NC were challenged with a 10-fold dose of Livacox® T anticoccidial vaccine to induce mild coccidiosis. All treatments significantly improved (P<0.05) body weight, average daily gain, and average daily feed intake, compared to PC, on days 21, 28, and 35. However, all treatments significantly reduced (P<0.05) the feed conversion ratio of PC by more than 14.60% on day 35, 11.76% during growing period, and 10.36% through the entire period. Broilers receiving anticoccidial treatments had 54.23% and 51.86% lower lesion scores (P<0.05) at 4 and 7 days post-infection, respectively, compared to PC. Additionally, the villus height of COM was significantly longer (P<0.05) than that of THB. Although the molecular action of COM remains unclear, OE addition to THB reduced the shedding of oocysts better than THB alone (P<0.05, 9-11 days post-infection). Most importantly, COM effectively minimized the mortality of challenged birds from as high as 11.90% (PC) to 0%, a level similar to NC and AB, while THB maintained a mortality of 2.38%. In conclusion, the anticoccidial effect of THB can be enhanced by the addition of OE for better animal performance and the elimination of deleterious effects from coccidiosis-infected broilers for 35 days
    corecore