1 research outputs found

    Rate Optimized Probabilistic Shaping-Based Transmission Over Field Deployed Coupled-Core 4-Core-Fiber

    Get PDF
    Multi-core fiber (MCF) transmission is a promising solution to support ever-increasing future traffic demands. Compared with uncoupled-core MCFs [1], the induced strong coupling in coupled-core (CC)-MCFs reduces the nonlinearity impact [2]. Transmission in these fibers leverages both spatial and wavelength division multiplexing and it has been experimentally tested mainly considering uniform quadrature amplitude modulation (QAM) formats [3]. Spectral efficiency can be further optimized by employing probabilistic shaping (PS) but the joint use of CC-MCF and PS has been rarely investigated [4]. In this paper, we present a transmission of PS signals through an infrastructure based on a CC-four core fiber (CC-4CF) deployed in the city of L'Aquila, Italy [5]. We ran experiments comparing the performance of standard polarization multiplexed 16QAM and PS-32QAM signals at a symbol rate of 30 GBaud: 800 Gbps net rate considering the spatial super-channel over four cores. We used the generalized mutual information (GMI) as performance metric and averaged over the 8 polarizations concidering the central channel. A realistic threshold (GMIth) of 3.6 bits/symbol (per spatial mode and polarization) has been set as a target: it is a typical value that guarantees post-FEC error-free transmission for most realistic SD-FEC
    corecore