10 research outputs found
Recommended from our members
High-Precision Isotope Analysis Of Uranium And Thorium By Tims
The U.S. Geological Survey (USGS) Yucca Mountain Project Branch laboratory in Denver, Colorado, conducts routine high-precision isotope analyses of uranium (U) and thorium (Th) using thermal ionization mass-spectrometry (TIMS). The measurements are conducted by a solid-source mass-spectrometer equipped with a Faraday multi-collector system and an energy filter in front of an active-film-type secondary electron multiplier (SEM). The abundance sensitivity of the instrument (signal at mass 237 over {sup 238}U in natural U) with the energy filter is {approx} 15 x 10{sup -9} and peak tails are reduced by a factor of {approx}100 relative to the Faraday cup measurements. Since instrument installation in April 2004, more than 500 rock and water samples have been analyzed in support of isotope-geochemical studies for the U.S. Department of Energy's Yucca Mountain Project. Isotope ratios of sub-nanogram to microgram U and Th samples are measured on graphite-coated single-filament and double-filament assemblies using zone-refined rhenium filaments. Ion beams less than 5 millivolt (mV) are measured with the SEM, which is corrected for non-linearity on the basis of measurements of National Institute of Standards and Technology (NIST) U-500 and 4321 B standards with ion beams ranging from 0.01 to 8 mV. Inter-calibration between the SEM and the Faraday multi-collector is performed for every mass cycle using a {approx}5 mV beam switched between Faraday cup and SEM ('bridging' technique), because SEM-Faraday inter-calibrations prior to the measurement failed to produce acceptable results. Either natural ({sup 235}U) or artificial ({sup 236}U, {sup 229}Th) isotopes were used for the bridging. Separate runs are conducted for minor isotopes using SEM only. These techniques result in high within-run precisions of <0.1 to 0.2 percent for {sup 234}U/{sup 238}U and 0.2 to 0.5 percent for {sup 230}Th/{sup 238}U
Recommended from our members
Isotope-Geochmical Evidence For Uranium Retardation in Zeolitized Tuffs at Yucca Mountain, Nevada, USA
Retardation of radionuclides by sorption on minerals in the rocks along downgradient groundwater flow paths is a positive attribute of the natural barrier at Yucca Mountain, Nevada, the site of a proposed high-level nuclear waste repository. Alteration of volcanic glass in nonwelded tuffs beneath the proposed repository horizon produced thick, widespread zones of zeolite- and clay-rich rocks with high sorptive capacities. The high sorptive capacity of these rocks is enhanced by the large surface area of tabular to fibrous mineral forms, which is about 10 times larger in zeolitic tuffs than in devitrified tuffs and about 30 times larger than in vitric tuffs. The alteration of glass to zeolites, however, was accompanied by expansion that reduced the matrix porosity and permeability. Because water would then flow mainly through fractures, the overall effectiveness of radionuclide retardation in the zeolitized matrix actually may be decreased relative to unaltered vitric tuff. Isotope ratios in the decay chain of {sup 238}U are sensitive indicators of long-term water-rock interaction. In systems older than about 1 m.y. that remain closed to mass transfer, decay products of {sup 238}U are in secular radioactive equilibrium where {sup 234}U/{sup 238}U activity ratios (AR) are unity. However, water-rock interaction along flow paths may result in radioactive disequilibrium in both the water and the rock, the degree of which depends on water flux, rock dissolution rates, {alpha}-recoil processes, adsorption and desorption, and the precipitation of secondary minerals. The effects of long-term water-rock interaction that may cause radionuclide retardation were measured in samples of Miocene-age subrepository zeolitized tuffs of the Calico Hills Formation (Tac) and the Prow Pass Tuff (Tcp) from borehole USW SD-9 near the northern part of the proposed repository area (sampled depth interval from 451.1 to 633.7 m; Engstrom and Rautman, 1996). Mineral abundances and whole-rock chemical and U-series isotopic compositions were measured in unfractured core samples representing rock matrix, in rubble (about 1 cm) rock fragments representing zones of higher permeability (assuming that the rubble core indicates a broken zone in the rock mass rather than an artifact of drilling), and in samples from surfaces of natural fractures representing potential fracture pathways. U concentrations and isotopic compositions also were measured in samples of pore water obtained by ultracentrifugation or by leaching rock samples with deionized H{sub 2}O. The concentrations and isotopic compositions of loosely bound U adsorbed on reactive mineral surfaces were obtained by analyzing 1 M sodium acetate (NaOAc) leachates of whole-rock samples
Recommended from our members
Impact of Quaternary Climate on Seepage at Yucca Mountain, Nevada
Uranium-series ages, oxygen-isotopic compositions, and uranium contents were determined in outer growth layers of opal and calcite from 0.5- to 3-centimeter-thick mineral coatings hosted by lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a permanent repository for high-level radioactive waste. Micrometer-scale growth layering in the minerals was imaged using a cathodoluminescence detector on a scanning electron microscope. Determinations of the chemistry, ages, and delta oxygen-18 values of the growth layers were conducted by electron microprobe analysis and secondary ion mass spectrometry techniques at spatial resolutions of 1 to about 20 micrometers ({micro}m) and 25 to 40 micrometers, respectively. Growth rates for the last 300 thousand years (k.y.) calculated from about 300 new high-resolution uranium-series ages range from approximately 0.5 to 1.5 {micro}m/k.y. for 1- to 3-centimeter-thick coatings, whereas coatings less than about I-centimeter-thick have growth rates less than 0.5 {micro}m/k.y. At the depth of the proposed repository, correlations of uranium concentration and delta oxygen-18 values with regional climate records indicate that unsaturated zone percolation and seepage water chemistries have responded to changes in climate during the last several hundred thousand years
Recommended from our members
Geochemical and Pb, Sr, and O isotopic study of the Tiva Canyon Tuff and Topopah Spring Tuff, Yucca Mountain, Nye County, Nevada
Yucca Mountain is currently being studied as a potential site for an underground repository for high-level radioactive waste. One aspect of the site characterization studies is an evaluation o the resource potential at Yucca Mountain. Geochemical and isotopic signatures of past alteration of the welded tuffs that underlie Yucca Mountain provide a means of assessing the probability of hydrothermal ore deposits being present within Yucca Mountain. In this preliminary report, geochemical and isotopic measurements of altered Tiva Canyon Tuff and Topopah Spring Tuff collected from fault zones exposed on the east flank of Yucca Mountain and from one drill core are compared to their unaltered equivalents sampled both in outcrop and drill core. The geochemistry and isotopic compositions of unaltered Tiva Canyon Tuff and Topopah Spring Tuff (high-silica rhyolite portions) are fairly uniform; these data provide a good baseline for comparisons with the altered samples. Geochemical analyses indicate that the brecciated tuffs are characterized by addition of calcium carbonate and opaline silica; this resulted in additions of calcium and strontium,increases in oxygen-18 content, and some redistribution of trace elements. After leaching the samples to remove authigenic carbonate, no differences in strontium or lead isotope compositions between altered and unaltered sections were observed. These data show that although localized alteration of the tuffs has occurred and affected their geochemistry, there is no indication of additions of exotic components. The lack of evidence for exotic strontium and lead in the most severely altered tuff samples at Yucca Mountain strongly implies a similar lack of exotic base or precious metals
Modern U-Pb chronometry of meteorites: Advancing to higher time resolution reveals new problems
In this paper, we evaluate the factors that influence the accuracy of lead (Pb)-isotopic ages of meteorites, and may possibly be responsible for inconsistencies between Pb-isotopic and extinct nuclide timescales of the early Solar System: instrumental mass fractionation and other possible analytical sources of error, presence of more than one component of non-radiogenic Pb, migration of ancient radiogenic Pb by diffusion and other mechanisms, possible heterogeneity of the isotopic composition of uranium (U), uncertainties in the decay constants of uranium isotopes, possible presence of "freshly synthesized" actinides with short half-life (e.g. 234U) in the early Solar System, possible initial disequilibrium in the uranium decay chains, and potential fractionation of radiogenic Pb isotopes and U isotopes caused by alpha-recoil and subsequent laboratory treatment. We review the use of 232Th/238U values to assist in making accurate interpretations of the U-Pb ages of meteorite components. We discuss recently published U-Pb dates of calcium-aluminum-rich inclusions (CAIs), and their apparent disagreement with the extinct nuclide dates, in the context of capability and common pitfalls in modern meteorite chronology. Finally, we discuss the requirements of meteorites that are intended to be used as the reference points in building a consistent time scale of the early Solar System, based on the combined use of the U-Pb system and extinct nuclide chronometers